View source: R/BiCopHfuncDeriv.R
BiCopHfuncDeriv | R Documentation |
This function evaluates the derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) or one of its arguments.
BiCopHfuncDeriv(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
u1 , u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopHfuncDeriv(u1, u2, obj, deriv = "par")
can be used.
A numeric vector of the conditional bivariate copula derivative
of the copula family
,
with parameter(s) par
, par2
,
with respect to deriv
,
evaluated at u1
and u2
.
Ulf Schepsmeier
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
RVineGrad()
, RVineHessian()
,
BiCopDeriv2()
, BiCopDeriv2()
,
BiCopHfuncDeriv()
, BiCop()
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## derivative of the conditional Student-t copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv(u1, u2, cop, deriv = "u2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.