BiCopHinv | R Documentation |
Evaluate the inverse conditional distribution function (inverse h-function) of a given parametric bivariate copula.
BiCopHinv(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
BiCopHinv1(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
BiCopHinv2(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
u1 , u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
numeric; single number or vector of size |
obj |
|
check.pars |
logical; default is |
The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,
h_1(u_2|u_1;\boldsymbol{\theta}) := P(U_2 \le u_2 | U_1 = u_1)
= \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_1},
h_2(u_1|u_2;\boldsymbol{\theta}) := P(U_1 \le u_1 | U_2 = u_2)
= \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_2},
where (U_1, U_2) \sim C
, and C
is a bivariate copula distribution
function with parameter(s) \boldsymbol{\theta}
.
For more details see Aas et al. (2009).
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopHinv(u1, u2, obj), BiCopHinv1(u1, u2, obj), BiCopHinv2(u1, u2, obj)
can be used.
BiCopHinv
returns a list with
hinv1 |
Numeric vector of the inverse conditional distribution function
(inverse h-function) of the copula |
hinv2 |
Numeric vector of the inverse conditional distribution function
(inverse h-function) of the copula |
BiCopHinv1
is a faster version that only calculates hinv1
;
BiCopHinv2
only calculates hinv2
.
Ulf Schepsmeier, Thomas Nagler
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.
BiCopHfunc()
, BiCopPDF()
, BiCopCDF()
,
RVineLogLik()
, RVineSeqEst()
, BiCop()
# inverse h-functions of the Gaussian copula
cop <- BiCop(1, 0.5)
hi <- BiCopHinv(0.1, 0.2, cop)
# or using the fast versions
hi1 <- BiCopHinv1(0.1, 0.2, cop)
hi2 <- BiCopHinv2(0.1, 0.2, cop)
all.equal(hi$hinv1, hi1)
all.equal(hi$hinv2, hi2)
# check if it is actually the inverse
cop <- BiCop(3, 3)
all.equal(0.2, BiCopHfunc1(0.1, BiCopHinv1(0.1, 0.2, cop), cop))
all.equal(0.1, BiCopHfunc2(BiCopHinv2(0.1, 0.2, cop), 0.2, cop))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.