BiCopHfuncDeriv2: Second Derivatives of the h-Function of a Bivariate Copula

View source: R/BiCopHfuncDeriv2.R

BiCopHfuncDeriv2R Documentation

Second Derivatives of the h-Function of a Bivariate Copula

Description

This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.

Usage

BiCopHfuncDeriv2(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = second derivative with respect to the first parameter (default)
"par2" = second derivative with respect to the second parameter (only available for the t-copula)
"u2" = second derivative with respect to the second argument u2
"par1par2" = second derivative with respect to the first and second parameter (only available for the t-copula)
"par1u2" = second derivative with respect to the first parameter and the second argument
"par2u2" = second derivative with respect to the second parameter and the second argument (only available for the t-copula)

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")

can be used.

Value

A numeric vector of the second-order conditional bivariate copula derivative

  • of the copula family

  • with parameter(s) par, par2

  • with respect to deriv

  • evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad(), RVineHessian(), BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples


## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## second derivative of the conditional bivariate t-copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv2(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")


VineCopula documentation built on Sept. 11, 2024, 5:26 p.m.