View source: R/BiCopPar2TailDep.R
BiCopPar2TailDep | R Documentation |
This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.
BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
numeric; single number or vector of size |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop
object
obj
, the alternative version
BiCopPar2TailDep(obj)
can be used.
lower |
Lower tail dependence coefficient for the given
bivariate copula
|
upper |
Upper tail dependence coefficient for the given bivariate
copula family
|
Lower and upper tail dependence coefficients for bivariate copula families
and parameters (\theta
for one parameter families and the first
parameter of the t-copula with \nu
degrees of freedom,
\theta
and \delta
for the two parameter BB1, BB6, BB7 and BB8 copulas)
are given in the following table.
No. | Lower tail dependence | Upper tail dependence |
1 | - | - |
2 |
2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)
|
2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right) |
3 | 2^{-1/\theta} | - |
4 | - | 2-2^{1/\theta} |
5 | - | - |
6 | - | 2-2^{1/\theta} |
7 | 2^{-1/(\theta\delta)} | 2-2^{1/\delta} |
8 | - | 2-2^{1/(\theta\delta)} |
9 | 2^{-1/\delta} | 2-2^{1/\theta} |
10 | - | 2-2^{1/\theta} if \delta=1 otherwise 0 |
13 | - | 2^{-1/\theta} |
14 | 2-2^{1/\theta} | - |
16 | 2-2^{1/\theta} | - |
17 | 2-2^{1/\delta} | 2^{-1/(\theta\delta)} |
18 | 2-2^{1/(\theta\delta)} | - |
19 | 2-2^{1/\theta} | 2^{-1/\delta} |
20 | 2-2^{1/\theta} if \delta=1 otherwise 0 | - |
23, 33 | - | - |
24, 34 | - | - |
26, 36 | - | - |
27, 37 | - | - |
28, 38 | - | - |
29, 39 | - | - |
30, 40 | - | - |
104,204 | - | \delta+1-(\delta^{\theta}+1)^{1/\theta} |
114, 214 | 1+\delta-(\delta^{\theta}+1)^{1/\theta} | - |
124, 224 | - | - |
134, 234 | - | - |
The number n
can be chosen arbitrarily, but must agree across
arguments.
Eike Brechmann
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
BiCopPar2Tau()
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep # alternative
## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.