BiCopIndTest | R Documentation |
This function returns the p-value of a bivariate asymptotic independence
test based on Kendall's \tau
.
BiCopIndTest(u1, u2)
u1 , u2 |
Data vectors of equal length with values in |
The test exploits the asymptotic normality of the test statistic
\texttt{statistic} := T =
\sqrt{\frac{9N(N - 1)}{2(2N + 5)}} \times |\hat{\tau}|,
where N
is the number of observations (length of u1
) and
\hat{\tau}
the empirical Kendall's tau of the data vectors u1
and u2
. The p-value of the null hypothesis of bivariate independence
hence is asymptotically
\texttt{p.value} = 2 \times \left(1 - \Phi\left(T\right)\right),
where \Phi
is the standard normal distribution function.
statistic |
Test statistic of the independence test. |
p.value |
P-value of the independence test. |
Jeffrey Dissmann
Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.
BiCopGofTest()
, BiCopPar2Tau()
,
BiCopTau2Par()
, BiCopSelect()
,
RVineCopSelect()
, RVineStructureSelect()
## Example 1: Gaussian copula with large dependence parameter
cop <- BiCop(1, 0.7)
dat <- BiCopSim(500, cop)
# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])
## Example 2: Gaussian copula with small dependence parameter
cop <- BiCop(1, 0.01)
dat <- BiCopSim(500, cop)
# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.