BiCopDeriv | R Documentation |
This function evaluates the derivative of a given parametric bivariate copula density with respect to its parameter(s) or one of its arguments.
BiCopDeriv(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
log = FALSE,
obj = NULL,
check.pars = TRUE
)
u1 , u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
log |
Logical; if |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopDeriv(u1, u2, obj, deriv = "par", log = FALSE)
can be used.
A numeric vector of the bivariate copula derivative
of the copula family
with parameter(s) par
, par2
with respect to deriv
,
evaluated at u1
and u2
.
Ulf Schepsmeier
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
RVineGrad()
, RVineHessian()
,
BiCopDeriv2()
, BiCopHfuncDeriv()
,
BiCop()
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## derivative of the bivariate t-copula with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its derivative w.r.t. the second argument u2
BiCopDeriv(u1, u2, cop, deriv = "u2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.