BiCopPar2Tau | R Documentation |
This function computes the theoretical Kendall's tau value of a bivariate copula for given parameter values.
BiCopPar2Tau(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
numeric; single number or vector of size |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopPar2Tau(obj)
can be used.
Theoretical value of Kendall's tau (vector) corresponding to the
bivariate copula family
and parameter vector (\theta, \delta) =
(par, par2)
.
No. (family ) | Kendall's tau (tau ) |
1, 2 | \frac{2}{\pi}\arcsin(\theta) |
3, 13 | \frac{\theta}{\theta+2} |
4, 14 | 1-\frac{1}{\theta} |
5 | 1-\frac{4}{\theta}+4\frac{D_1(\theta)}{\theta} |
with D_1(\theta)=\int_0^\theta \frac{x/\theta}{\exp(x)-1}dx (Debye function) |
|
6, 16 | 1+\frac{4}{\theta^2}\int_0^1
x\log(x)(1-x)^{2(1-\theta)/\theta}dx |
7, 17 | 1-\frac{2}{\delta(\theta+2)} |
8, 18 | 1+4\int_0^1 -\log(-(1-t)^\theta+1)
(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt |
9, 19 | 1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - 1)
/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt |
10, 20 | 1+4\int_0^1
-\log \left(((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right) |
* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt |
|
23, 33 | \frac{\theta}{2-\theta} |
24, 34 | -1-\frac{1}{\theta} |
26, 36 | -1-\frac{4}{\theta^2}\int_0^1
x\log(x)(1-x)^{-2(1+\theta)/\theta}dx |
27, 37 | -1-\frac{2}{\delta(2-\theta)} |
28, 38 | -1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)
(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt |
29, 39 | -1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - 1)
/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt |
30, 40 | -1-4\int_0^1 -\log
\left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right) |
* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt |
|
104,114 | \int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt |
with A(t) = (1-\delta)t+[(\delta(1-t))^{\theta}+t^{\theta}]^{1/\theta} |
|
204,214 | \int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt |
with A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta} |
|
124,134 | -\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt |
with A(t) = (1-\delta)t+[(\delta(1-t))^{-\theta}+t^{-\theta}]^{-1/\theta} |
|
224,234 | -\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt |
with A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta} |
|
The number n
can be chosen arbitrarily, but must agree across
arguments.
Ulf Schepsmeier, Tobias Erhardt
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.
BiCopTau2Par()
, BiCop()
## Example 1: Gaussian copula
tau0 <- 0.5
rho <- BiCopTau2Par(family = 1, tau = tau0)
# transform back
tau <- BiCopPar2Tau(family = 1, par = rho)
tau - 2/pi*asin(rho)
## Example 2:
vpar <- seq(from = 1.1, to = 10, length.out = 100)
tauC <- BiCopPar2Tau(family = 3, par = vpar)
tauG <- BiCopPar2Tau(family = 4, par = vpar)
tauF <- BiCopPar2Tau(family = 5, par = vpar)
tauJ <- BiCopPar2Tau(family = 6, par = vpar)
plot(tauC ~ vpar, type = "l", ylim = c(0,1))
lines(tauG ~ vpar, col = 2)
lines(tauF ~ vpar, col = 3)
lines(tauJ ~ vpar, col = 4)
## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.