View source: R/BiCopMetaContour.R
BiCopMetaContour | R Documentation |
Note: This function is deprecated and only available for backwards
compatibility. See contour.BiCop()
for contour plots of
parametric copulas, and BiCopKDE()
for kernel estimates.
BiCopMetaContour(
u1 = NULL,
u2 = NULL,
bw = 1,
size = 100,
levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
family = "emp",
par = 0,
par2 = 0,
PLOT = TRUE,
margins = "norm",
margins.par = 0,
xylim = NA,
obj = NULL,
...
)
u1 , u2 |
Data vectors of equal length with values in |
bw |
Bandwidth (smoothing factor; default: |
size |
Number of grid points; default: |
levels |
Vector of contour levels. For Gaussian, Student-t or
exponential margins the default value ( |
family |
An integer defining the bivariate copula family or indicating
an empirical contour plot: |
par |
Copula parameter; if empirical contour plot, |
par2 |
Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1
and type 2 copulas (default: |
PLOT |
Logical; whether the results are plotted. If |
margins |
Character; margins for the bivariate copula contour plot.
Possible margins are: |
margins.par |
Parameter(s) of the distribution of the margins if
necessary (default:
|
xylim |
A 2-dimensional vector of the x- and y-limits. By default
( |
obj |
|
... |
Additional plot arguments. |
x |
A vector of length |
y |
A vector of length |
z |
A matrix of dimension
|
The combination family = 0
(independence copula) and
margins = "unif"
(uniform margins) is not possible because all
z
-values are equal.
Ulf Schepsmeier, Alexander Bauer
BiCopChiPlot()
, BiCopKPlot()
,
BiCopLambda()
## meta Clayton distribution with Gaussian margins
cop <- BiCop(family = 1, tau = 0.5)
BiCopMetaContour(obj = cop, main = "Clayton - normal margins")
# better:
contour(cop, main = "Clayton - normal margins")
## empirical contour plot with standard normal margins
dat <- BiCopSim(1000, cop)
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp",
main = "empirical - normal margins")
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - normal margins")
## empirical contour plot with exponential margins
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2,
main = "empirical - exponential margins",
margins = "exp", margins.par = 1)
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - exponential margins",
margins = "exp")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.