BiCopCondSim | R Documentation |
This function simulates from a parametric bivariate copula, where on of
the variables is fixed. I.e., we simulate either from
C_{2|1}(u_2|u_1;\theta)
or C_{1|2}(u_1|u_2;\theta)
, which are both
conditional distribution functions of one variable given another.
BiCopCondSim(
N,
cond.val,
cond.var,
family,
par,
par2 = 0,
obj = NULL,
check.pars = TRUE
)
N |
Number of observations simulated. |
cond.val |
numeric vector of length |
cond.var |
either |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
numeric; single number or vector of size |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopCondSim(N, cond.val, cond.var, obj)
can be used.
A length N
vector of simulated from conditional distributions
related to bivariate copula with family
and parameter(s) par
,
par2
.
Thomas Nagler
BiCopCDF()
, BiCopPDF()
,
RVineSim()
# create bivariate t-copula
obj <- BiCop(family = 2, par = -0.7, par2 = 4)
# simulate 500 observations of (U1, U2)
sim <- BiCopSim(500, obj)
hist(sim[, 1]) # data have uniform distribution
hist(sim[, 2]) # data have uniform distribution
# simulate 500 observations of (U2 | U1 = 0.7)
sim1 <- BiCopCondSim(500, cond.val = 0.7, cond.var = 1, obj)
hist(sim1) # not uniform!
# simulate 500 observations of (U1 | U2 = 0.1)
sim2 <- BiCopCondSim(500, cond.val = 0.1, cond.var = 2, obj)
hist(sim2) # not uniform!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.