R/LCBD.comp.R

Defines functions LCBD.comp

Documented in LCBD.comp

#' Compute LCBD from any D matrix
#' 
#' Compute LCBD indices (Legendre & De Cáceres 2013) from a symmetric 
#' dissimilarity matrix (D) or from a beta component matrix (Repl, RichDiff or 
#' AbDiff, or Nes) (Legendre 2014).
#' 
#' @param D A dissimilarity or beta diversity component matrix, class 
#'   \code{dist} or \code{matrix}.
#' @param sqrt.D Take the square root of the dissimilarities in matrix D before 
#'   computing the LCBD indices.
#' @param save.D If \code{save.D} is \code{TRUE}, the dissimilarity matrix will 
#'   appear in the output list.
#'   
#' @details Use \code{sqrt.D = TRUE} when computing LCBD indices for most of the
#'   replacement and richness/abundance difference indices computed by function 
#'   \code{beta.div.comp}, as well as for the corresponding D matrices. See 
#'   Table S1.4 in Appendix S1 of Legendre (2014) to identify the matrices that 
#'   are Euclidean without taking the square root of the individual values. Only
#'   the RichDiffS (for presence-absence data) and AbDiff%diff indices (for 
#'   abundance data) of the Sørensen group in the Podani family have that 
#'   property. In all other cases, use \code{sqrt.D = TRUE}.
#'   
#'   When computing LCBD from a D matrix, use \code{sqrt = TRUE} if the D matrix
#'   is not Euclidean. The Euclidean property can be checked with function 
#'   \code{is.euclid} of \code{ade4}.
#'   
#'   BDtotal statistics are comparable among data sets having the same or 
#'   different numbers of sampling units (n), provided that the sampling units 
#'   are of the same size or represent the same sampling effort and that BDtotal
#'   is computed with the same D index.
#'   
#'   Function \code{LCBD.comp} produces the same (SStotal, BDtotal, LCBD)
#'   results as function \code{beta.div}. Note, however, that the latter
#'   produces other interesting results (p.LCBD, SCBD). Function
#'   \code{LCBD.comp} should then only be used to compute LCBD indices from
#'   dissimilarity matrices that cannot be computed by function \code{beta.div},
#'   e.g. genetic D matrices, or from replacement and richness difference
#'   matrices produced by function \code{beta.div.comp}. Significance of the
#'   LCBD indices cannot be tested when their calculation starts from a D matrix
#'   because the testing procedure involves permutation of the columns of raw
#'   data.
#'   
#' @return A list containing the following results: \itemize{ \item 
#'   \code{beta}: Total sum of squares and total beta diversity [= 
#'   Var(Y)] of the data matrix. \item \code{LCBD}: Vector of Local 
#'   contributions to beta diversity (LCBD) for the sites. \item \code{D}: The 
#'   input dissimilarity matrix, class \code{dist}; only if \code{save.D=TRUE}}.
#'   
#' @author Pierre Legendre \email{pierre.legendre@@umontreal.ca}
#'   
#' @references Legendre, P. 2014. Interpreting the replacement and richness 
#'   difference components of beta diversity. Global Ecology and Biogeography 
#'   23: 1324-1334.
#'   
#'   Legendre, P. & M. De Cáceres. 2013. Beta diversity as the variance of 
#'   community data: dissimilarity coefficients and partitioning. Ecology 
#'   Letters 16: 951-963.
#'   
#' @keywords spatial
#' @examples
#' 
#' ### Example 1
#' ### Compute the Hellinger distance, then the LCBD indices.
#' if(require("vegan", quietly = TRUE)){
#' data(mite)
#' mite.hel = decostand(mite, "hellinger")
#' mite.D = dist(mite.hel)
#' out.mite.D = LCBD.comp(mite.D, sqrt.D=FALSE)
#' }
#' 
#' ### Example 2
#' if(require("ade4", quietly = TRUE) & require("adegraphics", quietly = TRUE)){
#' data(doubs)
#' fish.sp = doubs$fish[-8,]   # Fish data; site 8 is removed because no fish were caught
#' 
#' out.comp = beta.div.comp(fish.sp, coef="S", quant=TRUE)
#' 
#' out.fish.D = LCBD.comp(out.comp$D, sqrt.D=TRUE)   # out.comp.D is not Euclidean
#' out.fish.D$beta
#' out.fish.Repl = LCBD.comp(out.comp$repl, sqrt.D=TRUE)   # out.comp$repl is not Euclidean
#' out.fish.Repl$beta
#' out.fish.AbDiff = LCBD.comp(out.comp$rich, sqrt.D=FALSE)   # out.comp$rich is Euclidean
#' out.fish.AbDiff$beta
#' 
#' ### Plot maps of the LCBD indices
#' fish.xy = doubs$xy[-8,]   # Geographic coordinates; site 8 removed because no fish were caught
#' 
#' # Map of LCBD indices for %difference dissimilarity
#' s.value(fish.xy, out.fish.D$LCBD, method="size", symbol = "circle",
#' col = c("white", "brown"), main = "Doubs fish LCBD, %difference D")
#' 
#' # Map of LCBD indices for replacement component of %difference dissimilarity
#' s.value(fish.xy, out.fish.Repl$LCBD, method="size", symbol = "circle",
#' col = c("white", "brown"), main = "Doubs fish replacement LCBD")
#' 
#' # Map of LCBD indices for abundance difference component of %difference dissimilarity
#' s.value(fish.xy, out.fish.AbDiff$LCBD, method="size", symbol = "circle", 
#' col = c("white", "brown"), main = "Doubs fish abundance diff. LCBD")
#' }
#' 
#' \donttest{
#' if(require("ade4", quietly = TRUE) & require("betapart", quietly = TRUE)){
#' ### Example 3
#' ### This example requires packages \code{"betapart"} and \code{"ade4"} for data. 
#' ### For the Baselga-family indices, the same partitioning results are obtained using
#' ### (1) beta.div.comp or (2) beta.pair.abund() of \code{"betapart"} and LCBD.comp()
#' 
#' data(doubs)   # Data available in \code{"ade4"}
#' fish.sp = doubs$fish[-8,]   
#' # Fish data; site 8 is removed because no fish were caught
#' # We use abundance data in this example, not presence-absence data
#' 
#' # Partition into Baselga-family replacement and nestedness components 
#' # using \code{"beta.div.comp"} with the percentage difference index (aka Bray-Curtis)
#' out.comp = beta.div.comp(fish.sp, coef="BS", quant=TRUE)
#' out.comp$part
#' 
#' # Compute the D and component matrices using \code{"beta.pair.abund"}
#' out3 = beta.pair.abund(fish.sp, index.family = "bray")
#' summary(out3)
#' 
#' is.euclid(out3$beta.bray)    # D matrix out3$beta.bray is not Euclidean
#' out3.D = LCBD.comp(out3$beta.bray, sqrt.D=TRUE)
#' out3.D$beta
#' # Compare BDtotal here to BDtotal in out.comp$part (above)
#' 
#' out3.Repl = LCBD.comp(out3$beta.bray.bal, sqrt.D=TRUE)
#' out3.Repl$beta
#' # Compare BDtotal here to RichDiff in out.comp$part (above)
#' 
#' out3.AbDiff = LCBD.comp(out3$beta.bray.gra, sqrt.D=TRUE)
#' out3.AbDiff$beta
#' # Compare BDtotal here to RichDiff/Nes in out.comp$part (above)
#' }
#' }
#'
#' @importFrom stats as.dist
#' @export LCBD.comp
#'   

LCBD.comp <- function(D, sqrt.D = TRUE, save.D = FALSE) {
    
    ### Internal function   # Legendre & Legendre 2012, eq. 9.42
    centre <- function(D, n)
        # Centre a square matrix D by matrix algebra
        # mat.cen = (I - 11'/n) D (I - 11'/n)
    {
        One <- matrix(1, n, n)
        mat <- diag(n) - One / n
        mat.cen <- mat %*% D %*% mat
    }
    ###
    D <- as.dist(D)
    if(sum(D)==0) stop("The dissimilarity matrix only contains zeros")
    x <- as.matrix(D)
    n <- nrow(x)
    
    if (sqrt.D) {
        # D is used in Gower centring
        SStotal <- sum(D) / n
        BDtotal <- SStotal / (n - 1)
        G <- centre(as.matrix(-0.5 * x), n)
    } else {
        # D^2 is used in Gower centring
        SStotal <- sum(D ^ 2) / n      # eq. 8
        BDtotal <- SStotal / (n - 1)   # eq. 3
        G <- centre(as.matrix(-0.5 * x ^ 2), n)
    }
    LCBD <-
        diag(G) / SStotal   # Legendre & De Caceres (2013), eq. 10b
    beta <- c(SStotal, BDtotal)
    names(beta) <- c("SStotal", "BDtotal")
    if (save.D) {
        out <- list(
            beta = beta,
            LCBD = LCBD,
            D = D
        )
    } else {
        out <- list(beta = beta, LCBD = LCBD)
    }
    out
}

Try the adespatial package in your browser

Any scripts or data that you put into this service are public.

adespatial documentation built on Sept. 11, 2024, 7:04 p.m.