R/beta.div.R

Defines functions beta.div

Documented in beta.div

#' Beta diversity computed as Var(Y)
#'
#' Compute estimates of total beta diversity as the total variance in a
#' community data matrix Y, as well as derived SCBD and LCBD statistics, for 19
#' dissimilarity coefficients or the raw data table. Computing beta diversity as
#' Var(Y) for raw, untransformed community composition data is not recommended.
#' Tests of significance of the LCBD indices are also produced.
#'
#' @param Y Community composition data. The object class can be either
#'   \code{data.frame} or \code{matrix}.
#'
#' @param method One of the 19 dissimilarity coefficients available in the
#'   function: \code{"hellinger"}, \code{"chord"}, \code{"log.chord"},
#'   \code{"chisquare"}, \code{"profiles"}, \code{"percentdiff"}, \code{"ruzicka"},
#'   \code{"divergence"}, \code{"canberra"}, \code{"whittaker"},
#'   \code{"wishart"}, \code{"kulczynski"}, \code{"jaccard"}, \code{"sorensen"},
#'   \code{"ochiai"}, \code{"ab.jaccard"}, \code{"ab.sorensen"},
#'   \code{"ab.ochiai"}, \code{"ab.simpson"}, \code{"euclidean"}. See Details.
#'   Names can be abbreviated to a non-ambiguous set of first letters. Default:
#'   \code{method="hellinger"}.
#' @param sqrt.D If \code{sqrt.D=TRUE}, the dissimilarities in matrix D are
#'   square-rooted before computation of SStotal, BDtotal and LCBD. This
#'   transformation may be useful for methods \code{"manhattan"},
#'   \code{"whittaker"}, \code{"divergence"}, \code{"canberra"},
#'   \code{"percentdiff"}, \code{ "ruzicka"}, \code{"wishart"} since square-root
#'   transformation of the dissimilarities makes these D matrices Euclidean.
#'   \itemize{\item Note 1 - Euclideanarity is useful for ordination by
#'   principal coordinate analysis; lack of this property does not adversely
#'   affect SStotal, BDtotal and LCBD. \item Note 2 - The logical value given to
#'   parameter \code{sqrt.D} has no incidence on calculations through methods
#'   \code{"euclidean"}, \code{"profiles"}, \code{"hellinger"}, \code{"log.chord"},
#'   \code{"chord"}, \code{"chisquare"} since no D matrix is computed in those cases. 
#'   \item Note 3 - For methods \code{"jaccard"}, \code{"sorensen"}, \code{"ochiai"}, 
#'   that function produces the dissimilarity matrix in the form sqrt(D), which is
#'   Euclidean.}
#' @param samp If \code{samp=TRUE}, the abundance-based distances (ab.jaccard,
#'   ab.sorensen, ab.ochiai, ab.simpson) are computed for sample data. If
#'   \code{samp=FALSE}, they are computed for true population data.
#' @param nperm Number of permutations for the tests of significance of LCBD
#'   indices.
#' @param adj Compute adjusted p-values using the Holm method. Default: \code{adj=TRUE}
#' @param save.D If \code{save.D=TRUE}, the distance matrix will appear in the
#'   output list.
#' @param clock If \code{clock=TRUE}, the computation time is printed. Useful
#'   when nperm is large.
#'
#' @details Calculations may be carried out in two ways, depending on the selected method.
#'   \itemize{ 
#'   \item For untransformed or transformed raw data, the total sum of squares (SStotal) 
#'   is first computed, then the total beta diversity (BDtotal), which is SStotal divided 
#'   by (n - 1), is calculated. This algorithm is used for methods \code{"euclidean"}, 
#'   \code{"profiles"}, \code{"hellinger"}, \code{"chord"}, \code{"log.chord"}, 
#'   \code{"chisquare"}. No transformation of the data is computed when the method is 
#'   \code{"euclidean"}. For methods \code{"profiles"}, \code{"hellinger"}, 
#'   \code{"chord"}, \code{"log.chord"}, \code{"chisquare"}, the algorithm begins with 
#'   computation of the same-name transformation of the community data (Legendre and 
#'   Gallagher 2001; Legendre and Legendre 2012, Section 7.7; Legendre and Borcard 
#'   2018); SStotal and BDtotal are then computed for the transformed data, followed 
#'   by calculation of the SCBD and LCBD indices.
#'   \item Calculations of BDtotal can also be conducted from a dissimilarity
#'   matrix. SStotal is computed by summing the squared dissimilarities in the
#'   lower triangular dissimilarity matrix and dividing by n. Then, total beta
#'   diversity (BDtotal) is obtained by dividing SStotal by (n-1). With option
#'   \code{sqrt.D = TRUE}, the computation of SStotal is equivalent to summing
#'   the distances instead of the squared distances. Choices are:
#'   \code{"whittaker"}, \code{"divergence"}, \code{"canberra"},
#'   \code{"percentdiff"}, \code{"ruzicka"}, \code{"wishart"},
#'   \code{"kulczynski"}, \code{"ab.jaccard"}, \code{"ab.sorensen"},
#'   \code{"ab.ochiai"}, \code{"ab.simpson"}, \code{"jaccard"},
#'   \code{"sorensen"}, \code{"ochiai"}. Equations for these dissimilarities are
#'   presented in Table 1 of Legendre and De Cáceres (2013). The Ružička index
#'   is described in Legendre (2014); this coefficient is suitable for beta
#'   diversity studies. See Chao et al. (2006) for details about the
#'   abundance-based (ab) coefficients.} 
#'   
#'   Community composition data can be log-transformed prior to analysis with the 
#'   chord distance; see Legendre and Borcard (2018). The log(y+1) transformation
#'   (\code{log1p} function of \code{base}) reduces the asymmetry of the species 
#'   distributions. The chord-log distance, readily available among the methods of the 
#'   \code{beta.div} function, is the chord distance computed on log(y+1)-transformed 
#'   data. This combined transformation is meaningful for community composition data 
#'   because the log is one of the transformations in the Box-Cox series, corresponding to 
#'   exponent 0; see Legendre and Legendre (2012,  Section 1.5.6). Exponent 1 (no 
#'   transformation of the data) followed by the chord transformation and calculation of 
#'   the Euclidean distance would simply produce the chord distance. Exponent 0.5 (square 
#'   root) followed by the chord transformation and the Euclidean distance would produce 
#'   the Hellinger distance. The chord, Hellinger and log-chord distances represent a 
#'   series where the data are increasingly transformed to reduce the asymmetry of the 
#'   distributions. Note that it is meaningless to subject log-transformed community 
#'   compostion data to the \code{"profiles"}, \code{"hellinger"}, or \code{"chisquare"} 
#'   distances available in this function.  
#'
#'   The Jaccard, Sørensen and Ochiai coefficients are the binary
#'   forms of 10 of the 12 dissimilarity coefficients (including the Ružička
#'   index) that are suitable for beta diversity assessment. The equivalences
#'   are described in Legendre and De Cáceres (2013, Table 1). These popular
#'   coefficients can be computed directly using function \code{beta.div}
#'   without going to the trouble of applying the quantitative forms of these
#'   coefficients to data reduced to presence-absence form.  \code{beta.div}
#'   produces the dissimilarity matrix in the form sqrt(D), which is Euclidean.
#'   Hence for these three coefficients, function \code{beta.div} should be used
#'   with option \code{sqrt.D=FALSE}.
#'   
#'   Species contributions to beta diversity (SCBD indices for the species) are computed
#'   for untransformed or transformed raw data, but they cannot be computed from
#'   dissimilarity matrices.
#'   
#'   Local contributions to beta diversity (LCBD indices) represent
#'   the degree of uniqueness of the sites in terms of their species
#'   compositions. They can be computed in all cases: raw (not recommended) or
#'   transformed data, as well as dissimilarity matrices. See Legendre and De
#'   Cáceres (2013) for details. LCBD indices are tested for significance by
#'   random, independent permutations within the columns of Y. This permutation
#'   method tests H0 that the species are distributed at random, independently
#'   of one another, among the sites, while preserving the species abundance
#'   distributions in the observed data. See Legendre and De Cáceres (2013) for
#'   discussion.
#'
#'   This version of \code{beta.div} calls computer code written in C to speed up
#'   computation, especially for the permutation tests of the LCBD indices.
#'
#' @return A list containing the following results: \itemize{ \item
#'   \code{beta}: Total sum of squares and total beta diversity [=
#'   Var(Y)] of the data matrix. BDtotal statistics computed with the same D
#'   index are comparable among data sets having the same or different numbers
#'   of sampling units (n), provided that they are of the same size or represent
#'   the same sampling effort. \item \code{SCBD}: Vector of Species
#'   contributions to beta diversity (SCBD), if computed. \item \code{LCBD}:
#'   Vector of Local contributions to beta diversity (LCBD) for the sites. \item
#'   \code{p.LCBD}: P-values associated with the LCBD indices. \item
#'   \code{p.adj}: Corrected P-values for the LCBD indices, Holm correction. \item
#'   \code{method}: Method selected. \item \code{note}: Notes indicate whether
#'   the selected coefficient is Euclidean or not. \item \code{D}: The distance
#'   matrix if \code{save.D=TRUE}. } When all sites contain a different set of
#'   species with no species in common, the maximum value that BDtotal can take
#'   depends on the method used in the calculation. \itemize{ \item With methods
#'   \code{"hellinger"}, \code{"chord"}, \code{"profiles"}, which have maximum values of
#'   sqrt(2), BDtotal produces an index in the range [0, 1] with a maximum value
#'   of 1. \item For dissimilarity indices with maximum values of 1, BDtotal has
#'   a maximum value of 0.5. \item Dissimilarity indices that do not have
#'   maximum values of 1 or sqrt(2) produce BDtotal values that do not have an
#'   upper bound; hence they cannot be compared across taxonomic groups or among
#'   study sites. This group includes the chi-square distance.} See Legendre &
#'   De Caceres (2013, p. 957-958), Table 2 and section Maximum value of BD. \cr
#'   For two sites only, the LCBD results are not interesting. With all
#'   coefficients, the two LCBD indices are equal to 0.5. The two associated
#'   p-values are 1 because LCBD is 0.5 for all columnwise permutations of the
#'   data. \cr The calculation is aborted when Y only contains two identical
#'   rows of data. In that case, SStotal and BDtotal are 0 and the LCBD indices
#'   cannot be computed (value NaN).
#'
#' @references Chao, A., R. L. Chazdon, R. K. Colwell and T. J. Shen. 2006.
#'   Abundance-based similarity indices and their estimation when there are
#'   unseen species in samples. Biometrics 62: 361-371.
#'
#'   Legendre, P. 2014. Interpreting the replacement and richness difference
#'   components of beta diversity. Global Ecology and Biogeography 23:
#'   1324-1334.
#'   
#'   Legendre, P. and D. Borcard. 2018. Box-Cox-chord transformations for
#'   community composition data prior to beta diversity analysis. Ecography 41:
#'   1820-1824.
#'
#'   Legendre, P. and M. De Cáceres. 2013. Beta diversity as the variance of
#'   community data: dissimilarity coefficients and partitioning. Ecology
#'   Letters 16: 951-963.
#'
#'   Legendre, P. and E. D. Gallagher, E.D. 2001. Ecologically meaningful
#'   transformations for ordination of species data. Oecologia 129: 271-280.
#'
#'   Legendre, P. and Legendre, L. 2012. Numerical Ecology. 3rd English edition.
#'   Elsevier Science BV, Amsterdam.
#'
#' @author Pierre Legendre \email{pierre.legendre@@umontreal.ca}
#'
#' @examples
#'
#' if(require("vegan", quietly = TRUE) & require("adegraphics", quietly = TRUE)){
#' data(mite)
#' res = beta.div(mite, "hellinger", nperm=999)
#'
#' # Plot a map of the LCBD indices using the Cartesian coordinates
#' data(mite.xy)
#' s.value(mite.xy, res$LCBD, symbol = "circle", col = c("white", "brown"), main="Map of mite LCBD")
#'
#' ### Example using the mite abundance data and the percentage difference dissimilarity
#' res = beta.div(mite, "percentdiff", nperm=999, clock=TRUE)
#'
#' # Plot a map of the LCBD indices
#' signif = which(res$p.LCBD <= 0.05)	# Which are the significant LCBD indices?
#' nonsignif = which(res$p.LCBD > 0.05)	# Which are the non-significant LCBD indices?
#' g1 <- s.value(mite.xy[signif,], res$LCBD[signif], ppoint.alpha = 0.5, plegend.drawKey = FALSE,
#'  symbol = "circle", col = c("white", "red"), main="Map of mite LCBD (red = significant indices)")
#' g2 <- s.value(mite.xy[nonsignif,], res$LCBD[nonsignif], ppoint.alpha = 0.5,
#' symbol = "circle", col = c("white", "blue"))
#' g2+g1
#' }
#'
#' @importFrom stats p.adjust
#' @export beta.div
#'


beta.div <-
    function(Y,
        method = "hellinger",
        sqrt.D = FALSE,
        samp = TRUE,
        nperm = 999,
        adj = TRUE,
        save.D = FALSE,
        clock = FALSE)
    {
        epsilon <- sqrt(.Machine$double.eps)
        method <-
            match.arg(
                method,
                c(
                    "hellinger",
                    "chord",
                    "log.chord",
                    "chisquare",
                    "profiles",
                    "percentdiff",
                    "ruzicka",
                    "divergence",
                    "canberra",
                    "whittaker",
                    "wishart",
                    "kulczynski",
                    "jaccard",
                    "sorensen",
                    "ochiai",
                    "ab.jaccard",
                    "ab.sorensen",
                    "ab.ochiai",
                    "ab.simpson",
                    "euclidean"
                )
            )
        # Note: "manhattan" and "modmeanchardiff" dissimilarities are not included: 
        # they are inappropriate for beta diversity analysis (Legendre & De Cáceres 2013)
        
        Y <- as.matrix(Y)
        if(sum( scale(Y, scale=FALSE)^2 )==0) stop("The data matrix has no variation")

        n <- nrow(Y)
        
        if ((n == 2) &
                (dist(Y[1:2,])[1] < epsilon))
            stop("Y contains two identical rows; BDtotal = 0")
        # Additional checks of the data
        if (any(Y < 0))
            stop("Data contain negative values\n")
        if (any(is.na(Y)))
            stop("Data contain 'NA' values\n")
        #
        aa <- system.time({
            #
            # First group of distances: function betadiv1 in C
            if (any(method == c(
                "hellinger",
                "chord",
                "chisquare",
                "profiles",
                "euclidean"
            ))) {
                res <- .Call("betadiv1", Y, method, nperm)
                SCBD <- res$SCBD
                note <- "Info -- This coefficient is Euclidean"
                note.sqrt.D <- NA

            } else if(method == "log.chord") {
                Y = log1p(Y)
                res <- .Call("betadiv1", Y, "chord", nperm)
                SCBD <- res$SCBD
                note <- "Info -- This coefficient is Euclidean"
                note.sqrt.D <- NA
                
            } else {
                # Second group of distances: function betadiv2 in C
                res <-
                    .Call("betadiv2", Y, method, nperm, sqrt.D, samp)
                SCBD <- NA
                if (sqrt.D)
                    note.sqrt.D <- "sqrt.D=TRUE"
                else
                    note.sqrt.D <- "sqrt.D=FALSE"
                #
                if (method == "divergence") {
                    note = "Info -- This coefficient is Euclidean"
                } else if (any(method == c("jaccard", "sorensen", "ochiai"))) {
                    note =
                        c(
                            "Info -- D is Euclidean because beta.div outputs D[jk] = sqrt(1-S[jk])",
                            "For this D functions, use beta.div with option sqrt.D=FALSE"
                        )
                } else if (any(
                    method ==
                        c(
                            "canberra",
                            "whittaker",
                            "percentdiff",
                            "ruzicka",
                            "wishart"
                        )
                )) {
                    if (sqrt.D) {
                        note = "Info -- In the form sqrt(D), this coefficient, is Euclidean"
                    } else {
                        note = c(
                            "Info -- For this coefficient, sqrt(D) would be Euclidean",
                            "Use is.euclid(D) of ade4 to check Euclideanarity of this D matrix"
                        )
                    }
                } else {
                    note = c(
                        "Info -- This coefficient is not Euclidean",
                        "Use is.euclid(D) of ade4 to check Euclideanarity of this D matrix"
                    )
                }
            }
            #
            if (!is.null(colnames(Y)) &
                    !is.na(SCBD[1]))
                names(SCBD) <- colnames(Y)
            if (!is.null(rownames(Y)))
                names(res$LCBD) <- rownames(Y)
            #
            if (nperm > 0) {
                p.LCBD <- res$p.LCBD
                if (!is.null(rownames(Y)))
                    names(p.LCBD) <- rownames(Y)
            } else {
                p.LCBD <- NA
            }
            if (adj &
                    (nperm > 0)) {
                p.adj <- p.adjust(p.LCBD, "holm")
            } else {
                p.adj <- NA
            }
            #
            if (save.D) {
                D <- res$D
                rownames(D) <- rownames(Y)
                D <- as.dist(D)
            } else {
                D <- NA
            }
            beta = c(res$SSTOTAL, res$BDTOTAL)
            names(beta) = c("SStotal", "BDtotal")
            # Output list of betadiv1: see C function "createList1", lines 342-348
            # Output list of betadiv2: see C function "createList2", lines 1110-1115
            out <-
                list(
                    beta = beta,
                    SCBD = SCBD,
                    LCBD = res$LCBD,
                    p.LCBD = p.LCBD,
                    p.adj = p.adj,
                    method = c(method, note.sqrt.D),
                    note = note,
                    D = D
                )
            #
        })
        aa[3] <- sprintf("%2f", aa[3])
        if (clock)
            cat("Time for computation =", aa[3], " sec\n")
        #
        class(out) <- "beta.div"
        out
    }

Try the adespatial package in your browser

Any scripts or data that you put into this service are public.

adespatial documentation built on Sept. 11, 2024, 7:04 p.m.