Nothing
#' Parametric forward selection of explanatory variables in regression and RDA
#'
#' If Y is univariate, this function implements FS in regression. If Y is
#' multivariate, this function implements FS using the F-test described by
#' Miller and Farr (1971). This test requires that (i) the Y variables be
#' standardized, and (ii) the error in the response variables be normally
#' distributed (to be verified by the user).
#'
#' The forward selection will stop when either K, R2tresh, adjR2tresh, alpha and
#' R2more has its parameter reached.
#'
#' @aliases forward.sel.par
#'
#' @param Y Response data matrix with n rows and m columns containing
#' quantitative variables
#' @param X Explanatory data matrix with n rows and p columns containing
#' quantitative variables
#' @param K Maximum number of variables to be selected. The default is one minus
#' the number of rows
#' @param R2thresh Stop the forward selection procedure if the R-square of the
#' model exceeds the stated value. This parameter can vary from 0.001 to 1
#' @param adjR2thresh Stop the forward selection procedure if the adjusted
#' R-square of the model exceeds the stated value. This parameter can take any
#' value (positive or negative) smaller than 1
#' @param R2more Stop the forward selection procedure if the difference in model
#' R-square with the previous step is lower than R2more. The default setting
#' is 0.001
#' @param alpha Significance level. Stop the forward selection procedure if the
#' p-value of a variable is higher than alpha. The default is 0.05
#' @param Yscale Standardize the variables in table Y to variance 1. The default
#' setting is FALSE. The setting is automatically changed to TRUE if Y
#' contains more than one variable. This is a validity condition for the
#' parametric test of significance (Miller and Farr 1971)
#' @param verbose If 'TRUE' more diagnostics are printed. The default setting is
#' TRUE
#' @return A dataframe with: \item{ variables }{ The names of the variables }
#' \item{ order }{ The order of the selection of the variables } \item{ R2 }{
#' The R2 of the variable selected } \item{ R2Cum }{ The cumulative R2 of the
#' variables selected } \item{ AdjR2Cum }{ The cumulative adjusted R2 of the
#' variables selected } \item{ F }{ The F statistic } \item{ pval }{ The
#' P-value statistic }
#' @author Pierre Legendre \email{pierre.legendre@@umontreal.ca} and Guillaume
#' Blanchet
#' @references Miller, J. K. & S. D. Farr. 1971. Bimultivariate redundancy: a
#' comprehensive measure of interbattery relationship. \emph{Multivariate
#' Behavioral Research}, \bold{6}, 313--324.\cr
#'
#' @keywords multivariate
#' @examples
#'
#' x <- matrix(rnorm(30),10,3)
#' y <- matrix(rnorm(50),10,5)
#'
#' forward.sel.par(y,x, alpha = 0.5)
#'
#' @importFrom stats pf
#' @export forward.sel.par
forward.sel.par <- function(Y, X, alpha = 0.05, K = nrow(X)-1, R2thresh = 0.99, R2more = 0.001, adjR2thresh = 0.99, Yscale = FALSE, verbose=TRUE)
{
FPval <- function(R2cum,R2prev,n,mm,p)
## Compute the partial F and p-value after adding a single explanatory
## variable to the model. In FS, the number of df of the numerator of F
## is always 1. See Sokal & Rohlf 1995, eq 16.14.
##
## The amendment, based on Miller and Farr (1971), consists in
## multiplying the numerator and denominator df by 'p', the number of
## variables in Y, when computing the p-value.
##
## Pierre Legendre, May 2007
{
df2 <- (n - 1 - mm)
Fstat <- ((R2cum - R2prev)*df2) / (1 - R2cum)
pval <- pf(Fstat, 1*p, df2*p, lower.tail = FALSE)
return(list(Fstat = Fstat, pval = pval))
}
## The following functions have been included in vegan
## there are local copies to avoid dependencies
.RsquareAdj <- function (x, n, m)
{
r2 <- 1 - (1 - x) * (n - 1)/(n - m - 1)
if (any(na <- m >= n - 1))
r2[na] <- NA
r2
}
.simpleRDA <- function (Y, X, SS.Y)
{
Q <- qr(X, tol=1e-6)
Yfit.X <- qr.fitted(Q, Y)
SS <- sum(Yfit.X^2)
if (missing(SS.Y)) SS.Y <- sum(Y^2)
Rsquare <- SS/SS.Y
list(Rsquare = Rsquare, m = Q$rank)
}
Y <- as.matrix(Y)
X <- apply(as.matrix(X), 2, scale, center = TRUE, scale = TRUE)
var.names <- colnames(as.data.frame(X))
n <- nrow(X)
m <- ncol(X)
if(nrow(Y) != n) stop("Numbers of rows not the same in Y and X")
p <- ncol(Y)
if(p > 1) {
Yscale = TRUE
if(verbose) cat("The variables in response matrix Y have been standardized",'\n')
}
Y <- apply(Y, 2, scale, center = TRUE, scale = Yscale)
SS.Y <- sum(Y^2)
X.out <- c(1:m)
## Find the first variable X to include in the model
R2prev <- 0
R2cum <- 0
for(j in 1:m) {
toto <- .simpleRDA(Y, X[,j], SS.Y)
if(toto$Rsquare > R2cum) {
R2cum <- toto$Rsquare
no.sup <- j
}
}
mm <- 1
FP <- FPval(R2cum, R2prev, n, mm, p)
if(FP$pval <= alpha) {
adjRsq <- .RsquareAdj(R2cum, n, mm)
res1 <- var.names[no.sup]
res2 <- no.sup
res3 <- R2cum
res4 <- R2cum
res5 <- adjRsq
res6 <- FP$Fstat
res7 <- FP$pval
X.out[no.sup] <- 0
delta <- R2cum
} else {
stop("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval)
}
## Add variables X to the model
while((FP$pval <= alpha) & (mm <= K) & (R2cum <= R2thresh) & (delta >= R2more) & (adjRsq <= adjR2thresh)) {
mm <- mm+1
R2prev <- R2cum
R2cum <- 0
for(j in 1:m) {
if(X.out[j] != 0) {
toto <- .simpleRDA(Y, X[,c(res2,j)], SS.Y)
if(toto$Rsquare > R2cum) {
R2cum <- toto$Rsquare
no.sup <- j
}
}
}
FP <- FPval(R2cum, R2prev, n, mm, p)
delta <- R2cum - R2prev
adjRsq <- .RsquareAdj(R2cum, n, mm)
res1 <- c(res1, var.names[no.sup])
res2 <- c(res2, no.sup)
res3 <- c(res3, delta)
res4 <- c(res4, R2cum)
res5 <- c(res5, adjRsq)
res6 <- c(res6, FP$Fstat)
res7 <- c(res7, FP$pval)
X.out[no.sup] <- 0
}
if(verbose) {
if(FP$pval > alpha) cat("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval,'\n')
if(mm > K) cat("Procedure stopped (K criterion): mm = ",mm," is larger than ",K," after including variable ",no.sup,'\n')
if(R2cum > R2thresh) cat("Procedure stopped (R2thresh criterion): R2cum for variable ",no.sup," is ",R2cum,'\n')
if(delta < R2more) cat("Procedure stopped (R2more criterion): delta for variable ",no.sup," is ",delta,'\n')
if(adjRsq > adjR2thresh) cat("Procedure stopped (adjR2thresh criterion): adjRsq for variable ",no.sup," is ",adjRsq,'\n')
}
res <- data.frame(res1,res2,res3,res4,res5,res6,res7)
colnames(res) <- c("variable","order","R2","R2cum","AdjR2Cum","F","pval")
if((FP$pval > alpha) | (mm > K) | (R2cum > R2thresh) | (delta < R2more) | (adjRsq > adjR2thresh)) res <- res[1:(mm-1),]
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.