Nothing
waerden.test <-
function(y, trt,alpha=0.05,group=TRUE,main=NULL,console=FALSE) {
name.y <- paste(deparse(substitute(y)))
name.t <- paste(deparse(substitute(trt)))
if(is.null(main))main<-paste(name.y,"~", name.t)
junto <- subset(data.frame(y, trt), is.na(y) == FALSE)
medians<-tapply.stat(junto[,1],junto[,2],stat="median")
for(i in c(1,5,2:4)) {
x <- tapply.stat(junto[,1],junto[,2],function(x)quantile(x)[i])
medians<-cbind(medians,x[,2])
}
medians<-medians[,3:7]
names(medians)<-c("Min","Max","Q25","Q50","Q75")
Means <- tapply.stat(junto[,1],junto[,2],stat="mean") # change
sds <- tapply.stat(junto[,1],junto[,2], stat="sd") #change
nn <- tapply.stat(junto[,1],junto[,2],stat="length") # change
Means<-data.frame(Means,std=sds[,2],r=nn[,2],medians)
rownames(Means)<-Means[,1]
Means<-Means[,-1]
names(Means)[1]<-name.y
N<- nrow(junto)
junto[, 1] <- qnorm(round(rank(junto[, 1]) /(N+1),3))
S <- sum(junto[,1]^2)/(N-1)
means <- tapply.stat(junto[,1],junto[,2],stat="mean") # change
sds <- tapply.stat(junto[,1],junto[,2], stat="sd") #change
nn <- tapply.stat(junto[,1],junto[,2],stat="length") # change
means<-data.frame(means,std=sds[,2],r=nn[,2])
names(means)[1:2]<-c(name.t,name.y)
#row.names(means)<-means[,1]
ntr<-nrow(means)
DFerror<-N - ntr
T1 <- 0
for (i in 1:ntr) {
T1 <- T1 + means[i, 2]^2*means[i,4] # change
}
T1<-T1/S
p.chisq <- 1 - pchisq(T1, ntr - 1)
if(console){
cat("\nStudy:",main)
cat("\nVan der Waerden (Normal Scores) test's\n")
cat("\nValue :", T1)
cat("\nPvalue:", p.chisq)
cat("\nDegrees of Freedom: ", ntr - 1,"\n\n")
cat(paste(name.t,",",sep="")," means of the normal score\n\n")
print(data.frame(row.names = means[,1], means[,-1]))
cat("\nPost Hoc Analysis\n")
}
MSerror <- S * ((N - 1 - T1)/(N - ntr))
#...............
nr <- unique(means[,4]) # change
nr1<-nr
Tprob<-qt(1-alpha/2,DFerror)
LSD <- Tprob * sqrt(2 * MSerror/nr)
statistics<-data.frame(Chisq=T1,Df=ntr-1,p.chisq=p.chisq )
if ( group & length(nr) == 1 & console){
cat("\nAlpha:",alpha,"; DF Error:",DFerror,"\n")
cat("\nMinimum Significant Difference:", LSD,"\n")
}
if ( group & length(nr) != 1 & console) cat("\nGroups according to probability of treatment differences and alpha level(",alpha,")\n")
if ( length(nr) == 1) statistics<-data.frame(statistics,t.value=Tprob,MSD=LSD)
comb <-utils::combn(ntr,2)
nn<-ncol(comb)
dif<-rep(0,nn)
LCL<-dif
UCL<-dif
sig<-NULL
pvalue<-rep(0,nn)
for (k in 1:nn) {
i<-comb[1,k]
j<-comb[2,k]
dif[k]<-means[i,2]-means[j,2]
sdtdif<- sqrt(S*((N-1-T1)/(N-ntr))*(1/means[i,4]+1/means[j,4])) # change
pvalue[k]<- round(2*(1-pt(abs(dif[k])/sdtdif,DFerror)),4)
LSD <- Tprob*sdtdif
LCL[k] <- dif[k] - LSD
UCL[k] <- dif[k] + LSD
sig[k]<-" "
if (pvalue[k] <= 0.001) sig[k]<-"***"
else if (pvalue[k] <= 0.01) sig[k]<-"**"
else if (pvalue[k] <= 0.05) sig[k]<-"*"
else if (pvalue[k] <= 0.1) sig[k]<-"."
}
if(!group){
tr.i <- means[comb[1, ],1]
tr.j <- means[comb[2, ],1]
comparison<-data.frame("difference" = dif, pvalue=pvalue,"signif."=sig,LCL,UCL)
rownames(comparison)<-paste(tr.i,tr.j,sep=" - ")
if(console){cat("\nComparison between treatments\nmean of the normal score\n\n")
print(comparison)}
groups=NULL
}
if (group) {
# Matriz de probabilidades
Q<-matrix(1,ncol=ntr,nrow=ntr)
p<-pvalue
k<-0
for(i in 1:(ntr-1)){
for(j in (i+1):ntr){
k<-k+1
Q[i,j]<-p[k]
Q[j,i]<-p[k]
}
}
groups <- orderPvalue(means[, 1], means[, 2],alpha, Q,console)
names(groups)[1]<-"score"
if(console) {
cat("\nTreatments with the same letter are not significantly different.\n")
cat("\nMeans of the normal score\n\n")
print(groups)
}
comparison<-NULL
}
Means<-data.frame(normalScore=means[,2],Means)
Means<-Means[,c(2,1,3:9)]
parameters<-data.frame(test="Waerden",name.t=name.t,ntr = ntr, alpha=alpha)
rownames(parameters)<-" "
rownames(statistics)<-" "
output<-list(statistics=statistics,parameters=parameters,
means=Means,comparison=comparison,groups=groups)
class(output)<-"group"
invisible(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.