R/fillHzGaps.R

Defines functions fillHzGaps

Documented in fillHzGaps

#' @title Find and Fill Horizon Gaps
#'
#' @description This function attempts to find "gaps" in the horizon records of a `SoilProfileCollection` object and fill with placeholder horizons (profile ID, horizon ID, to/bottom depths, all else `NA`). Missing horizon records between the top of each profile and `to_top`, or the bottom of each profile and `to_bottom` are treated as gaps when those arguments are not `NULL`. You can use this function to prepare a potentially messy `SoilProfileCollection` for subsequent analyses that are sensitive to horizon sequence inconsistencies or require a conformal "rectangle" of data spanning known depths.
#'
#' Gaps are defined as:
#'  * within each profile, for horizons `i` to `n_hz`:
#'  * `bottom_i != top_i+1 (but only to i = 1:(n_hz - 1)`
#'
#' @param x `SoilProfileCollection` object
#' 
#' @param flag logical, flag empty horizons that have been added. default: `TRUE`
#' 
#' @param to_top numeric, fill from shallowest top depth in each profile to specified depth? default: `0` 
#' @param to_bottom numeric, fill from deepest bottom depth in each profile to specified depth? default: `aqp::max(x)` 
#' 
#' @return a possibly modified `SoilProfileCollection` object
#' 
#' @author A.G. Brown and D.E. Beaudette
#' 
#' @export
#'
#' @examples
#'
#' data(sp4)
#' depths(sp4) <- id ~ top + bottom
#'
#' # introduce depth logic errors
#' idx <- c(2, 6:7, 8, 12)
#' sp4$top[idx] <- NA
#'
#' # check
#' horizons(sp4)[idx, ]
#'
#' # create gaps by removing logic errors
#' x <- HzDepthLogicSubset(sp4, byhz = TRUE)
#'
#' # check on removed horizons (hzID values)
#' metadata(x)$removed.horizons
#'
#' # inspect
#' par(mar = c(0, 0, 0, 2))
#' plotSPC(x, width = 0.3, default.color = 'royalblue', 
#' name = 'hzID', name.style = 'center-center', cex.names = 0.8,
#' cex.id = 0.66)
#'
#' # fill gaps left by HzDepthLogicSubset()
#' z <- fillHzGaps(x, flag = TRUE)
#' 
#' # graphical check
#' plotSPC(z, width = 0.3, color = '.filledGap', name = 'hzID', 
#' show.legend = FALSE, name.style = 'center-center', cex.names = 0.8,
#' cex.id = 0.66)
#' 
#' # fill top to 0 cm
#' z2 <- fillHzGaps(x, flag = TRUE, to_top = 0)
#' plotSPC(z2, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)
#' 
#' # fill bottom to max(SPC)
#' z3 <- fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))
#' plotSPC(z3, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)
#'
#' ## another example
#' data(sp4)
#' depths(sp4) <- id ~ top + bottom
#' 
#' # remove 1st horizons from profiles 1:4
#' idx <- sp4[,, .FIRST, .HZID]
#' replaceHorizons(sp4) <- horizons(sp4)[-idx[1:4], ]
#' 
#' # prepare for dice()
#' z <- fillHzGaps(sp4, to_top = 0, to_bottom = 50, flag = TRUE) 
#' 
#' # empty-horizon padding is in place for formula interface to dice()
#' d <- dice(z, fm = 0:50 ~ .)
#' plotSPC(d, color = 'Ca', show.legend = FALSE)
#' plotSPC(d, color = '.filledGap', show.legend = FALSE)
#' 
fillHzGaps <- function(x, flag = TRUE, to_top = 0, to_bottom = max(x)) {
  
  # SPC details
  idn <- idname(x)
  htb <- horizonDepths(x)
  hznames <- horizonNames(x)
  hcnames <- c(idn, htb)
  
  # just the horizons, convert to DT
  h <- data.table::as.data.table(horizons(x))
  nh <- nrow(h)
  
  # indices used by gap-detection
  lead.idx <- (2:nh)[seq_len(nh)]
  lag.idx <- (1:(nh - 1))[seq_len(nh)]

  # identify affected horizons
  # this will include the first perfectly overlapping horizons
  # in the case of multiple entries of e.g. E/B
  bad.idx <- which(h[[htb[2]]][lag.idx] != h[[htb[1]]][lead.idx]
                   & h[[idn]][lag.idx] == h[[idn]][lead.idx])
  
  # TODO: data.table more performant than above for large SPC?
  #   bad.idx <- h[, .I[.SD[1:(.N - 1), 3] != .SD[2:.N, 2] &
  #                     .SD[1:(.N - 1), 1] == .SD[2:.N, 1]],
  #                      .SDcols = hcnames]

  ## BUG: need a short-circuit for single-profile / single-horizon objects
  ## https://github.com/ncss-tech/aqp/issues/301
  ## 
  ## NOTE: do not short-circuit, a single profile, single-horizon may still need filling depending on the top/bottom depth and other params
  
  
  # https://github.com/ncss-tech/aqp/issues/296
  # do not attempt to fill gaps when there are perfectly overlapping horizons
  # likely an intentional data modeling decision
  # vector matches order and length of horizons
  .ov <- flagOverlappingHz(x)
  
  # filter out perfectly overlapping horizons
  bad.idx <- setdiff(bad.idx, which(.ov))
  
  # create template data.frame
  # NOTE: bad.idx could be 0-length, and implicitly h[0, ]
  hz.template <- h[bad.idx, ]

  if (nrow(hz.template) > 0) {
    # replace non-ID/depth column values with NA
    hz.template[, hznames[!hznames %in% hcnames]] <- NA

    # fill gaps
    hz.template[[htb[1]]] <- h[[htb[2]]][bad.idx]     # replace top with (overlying) bottom
    hz.template[[htb[2]]] <- h[[htb[1]]][bad.idx + 1] # replace bottom with (underlying) top
  }

  # fill from shallowest top depth to X cm
  surface.template <- hz.template[0,]
  
  if (!is.null(to_top) && is.numeric(to_top)) {
    .FIRST <- NULL
    .HZID <-  NULL
    surface.template <- h[x[,, .FIRST, .HZID],]
    surface.template <- surface.template[which(surface.template[[htb[1]]] > to_top)]
    if (nrow(surface.template) > 0) {
      surface.template[, hznames[!hznames %in% hcnames]] <- NA

      surface.template[[htb[2]]] <- surface.template[[htb[1]]] # replace bottom with (underlying) top
      surface.template[[htb[1]]] <- to_top                     # replace top with zero
    }
  }
  
  # fill from deepest bottom depth to X cm
  bottom.template <- hz.template[0,]
  
  if (!is.null(to_bottom) && is.numeric(to_bottom)) {
    .LAST <- NULL
    .HZID <-  NULL
    bottom.template <- h[x[,, .LAST, .HZID],]
    bottom.template <- bottom.template[which(bottom.template[[htb[2]]] < to_bottom)]
    if (nrow(bottom.template) > 0) {
      bottom.template[, hznames[!hznames %in% hcnames]] <- NA
      
      bottom.template[[htb[1]]] <- bottom.template[[htb[2]]] # replace top with (overlying) bottom
      bottom.template[[htb[2]]] <- to_bottom                 # replace bottom with to_bottom
    }
  }
  
  # flag if needed
  if (flag) {
    if (nh > 0) h[['.filledGap']] <- FALSE
    if (nrow(hz.template) > 0) hz.template[['.filledGap']] <- TRUE
    if (nrow(surface.template) > 0) surface.template[['.filledGap']] <- TRUE
    if (nrow(bottom.template) > 0) bottom.template[['.filledGap']] <- TRUE
  }

  # combine original data with filled data
  res <- h
  if (nrow(hz.template) > 0) {
    res <- rbind(res, hz.template)
  }
  
  if (nrow(surface.template) > 0) {
    res <- rbind(res, surface.template)
  }
  
  if (nrow(bottom.template) > 0) {
    res <- rbind(res, bottom.template)
  }
  
  # ID + top depth sort
  res <- res[order(res[[idn]], res[[htb[1]]]),]

  # re-calculate unique hzID (note: AFTER reorder)
  if (is.null(res$hzID) || !is.numeric(as.numeric(res$hzID))) {
   res$hzID <- as.character(1:nrow(res))
  } else {
   nahz <- is.na(res$hzID)
   res$hzID[nahz] <- max(as.numeric(res$hzID), na.rm = TRUE) + seq_len(sum(nahz))
  }
  
  # replace horizons (use df class in object x)
  replaceHorizons(x) <- .as.data.frame.aqp(res, aqp_df_class(x))

  # use the auto-calculated hzID (in case user had e.g. phiid, chiid set)
  hzidname(x) <- "hzID"

  return(x)
}

Try the aqp package in your browser

Any scripts or data that you put into this service are public.

aqp documentation built on Sept. 11, 2024, 7:11 p.m.