Nothing
###########################################################################/**
# @RdocClass QualityAssessmentModel
#
# @title "The QualityAssessmentModel class"
#
# \description{
# @classhierarchy
# }
#
# @synopsis
#
# \arguments{
# \item{plm}{A @see "ProbeLevelModel".}
# \item{tags}{A @character @vector of tags.}
# \item{...}{Not used.}
# }
#
# \section{Fields and Methods}{
# @allmethods "public"
# }
#
# @author "KS, HB"
#*/###########################################################################
setConstructorS3("QualityAssessmentModel", function(plm=NULL, tags="*", ...) {
# Argument 'plm':
if (!is.null(plm)) {
plm <- Arguments$getInstanceOf(plm, "ProbeLevelModel")
}
# Argument 'tags':
if (!is.null(tags)) {
tags <- Arguments$getTags(tags, collapse=NULL)
}
extend(Object(), "QualityAssessmentModel",
.plm = plm,
.tags = tags
)
})
setMethodS3("as.character", "QualityAssessmentModel", function(x, ...) {
# To please R CMD check
this <- x
s <- sprintf("%s:", class(this)[1])
s <- c(s, paste("Name:", getName(this)))
s <- c(s, paste("Tags:", getTags(this, collapse=",")))
s <- c(s, paste("Path:", getPath(this)))
s <- c(s, "Chip-effect set:")
s <- c(s, paste(" ", as.character(getChipEffectSet(this))))
GenericSummary(s)
}, protected=TRUE)
setMethodS3("getDataSet", "QualityAssessmentModel", function(this, ...) {
getDataSet(getPlm(this), ...)
})
setMethodS3("getPlm", "QualityAssessmentModel", function(this, ...) {
this$.plm
})
setMethodS3("getChipEffectSet", "QualityAssessmentModel", function(this, ...) {
plm <- getPlm(this)
getChipEffectSet(plm)
})
setMethodS3("nbrOfArrays", "QualityAssessmentModel", function(this, ...) {
ces <- getChipEffectSet(this)
length(ces)
})
setMethodS3("getCdf", "QualityAssessmentModel", function(this, ...) {
ces <- getChipEffectSet(this)
getCdf(ces)
}, protected=TRUE)
setMethodS3("getName", "QualityAssessmentModel", function(this, ...) {
plm <- getPlm(this)
getName(plm)
})
setMethodS3("getAsteriskTags", "QualityAssessmentModel", function(this, collapse=NULL, ...) {
tags <- "QC"
# Parameter-specific tags?
# <none>
# Collapse?
tags <- paste(tags, collapse=collapse)
tags
}, protected=TRUE)
setMethodS3("getTags", "QualityAssessmentModel", function(this, collapse=NULL, ...) {
# Data set specific tags
ces <- getChipEffectSet(this)
inputTags <- getTags(ces, collapse=NULL)
# Get class-specific tags
tags <- this$.tags
# In case this$.tags is not already split
tags <- strsplit(tags, split=",", fixed=TRUE)[[1]]
# Expand asterisk tags
if (any(tags == "*")) {
tags[tags == "*"] <- getAsteriskTags(this, collapse=",")
}
# Combine input tags and local tags
tags <- c(inputTags, tags)
# Collapsed or split?
if (!is.null(collapse)) {
tags <- paste(tags, collapse=collapse)
} else {
tags <- unlist(strsplit(tags, split=","))
}
if (length(tags) == 0)
tags <- NULL
tags
})
setMethodS3("getFullName", "QualityAssessmentModel", function(this, ...) {
name <- getName(this)
tags <- getTags(this)
fullname <- paste(c(name, tags), collapse=",")
fullname <- gsub("[,]$", "", fullname)
fullname
})
setMethodS3("getRootPath", "QualityAssessmentModel", function(this, ...) {
"qcData"
}, protected=TRUE)
setMethodS3("getPath", "QualityAssessmentModel", function(this, ...) {
# Create the (sub-)directory tree for the dataset
# Root path
rootPath <- getRootPath(this)
# Full name
fullname <- getFullName(this)
# Chip type
cdf <- getCdf(this)
chipType <- getChipType(cdf, fullname=FALSE)
# The full path
path <- filePath(rootPath, fullname, chipType)
path <- Arguments$getWritablePath(path)
path
})
###########################################################################/**
# @RdocMethod getResiduals
#
# @title "Calculates the residuals from a probe-level model"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{...}{Additional arguments passed \code{byPath()} of
# @see "QualityAssessmentSet".}
# }
#
# \value{
# Returns an @see "QualityAssessmentSet".
# }
#
# \seealso{
# @seeclass
# }
#*/###########################################################################
setMethodS3("getResiduals", "QualityAssessmentModel", function(this, units=NULL, path=NULL, name="qcData", tags="*", ram=NULL, force=FALSE, verbose=FALSE, ...) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Local functions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
resFcn <- function(kk) {
yL <- .subset2(rawDataList, kk)
thetaL <- .subset2(chipEffectList, kk)
phiL <- .subset2(probeAffinityList, kk)
nbrOfGroups <- length(yL)
res <- lapply(seq_len(nbrOfGroups), FUN=function(gg) {
y <- .subset2(.subset2(yL, gg), "intensities")
theta <- .subset2(.subset2(thetaL, gg), "theta")[1,]
phi <- .subset2(.subset2(phiL, gg), "phi")
yhat <- outer(phi, theta, FUN="*")
eps <- (y - yhat)
list(eps=eps)
})
names(res) <- names(yL)
res
} # resFcn()
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'path':
if (is.null(path)) {
cdf <- getCdf(this)
chipType <- getChipType(cdf, fullname=FALSE)
path <- file.path(name, getName(this), "residuals", chipType)
}
if (!is.null(path)) {
path <- Arguments$getWritablePath(path)
}
# Argument 'tags':
if (!is.null(tags)) {
tags <- Arguments$getCharacters(tags)
tags <- trim(unlist(strsplit(tags, split=",")))
# Update default tags
tags[tags == "*"] <- "residuals"
}
# Argument 'ram':
ram <- getRam(aromaSettings, ram)
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
if (verbose) {
pushState(verbose)
on.exit(popState(verbose))
}
unitsPerChunk <- ram * 100000/length(this)
unitsPerChunk <- Arguments$getInteger(unitsPerChunk, range=c(1,Inf))
# If residuals already calculated, and if force==FALSE, just return
# a CelSet with the previous calculations
verbose && enter(verbose, "Calculating PLM residuals")
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Get data and parameter objects
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
plm <- getPlm(this)
ds <- getDataSet(plm)
ces <- getChipEffectSet(plm)
paf <- getProbeAffinityFile(plm)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Generating output pathnames
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
path <- Arguments$getWritablePath(path)
filenames <- getNames(ces)
pathnames <- sapply(filenames, function(filename) {
filename <- sprintf("%s,residuals.CEL", filename)
pathname <- Arguments$getWritablePathname(filename, path=path)
# Rename lower-case *.cel to *.CEL, if that is the case. Old versions
# of the package generated lower-case CEL files. /HB 2007-08-09
pathname <- AffymetrixFile$renameToUpperCaseExt(pathname)
pathname
})
nbrOfFiles <- length(pathnames)
nbrOfArrays <- length(ds)
cdf <- getCdf(ds)
cdfHeader <- getHeader(cdf); # Might be used later
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# find units to do; first check whether last file in list exists
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (isFile(pathnames[nbrOfFiles])) {
qaf <- QualityAssessmentFile$fromFile(pathnames[nbrOfFiles])
unitsToDo <- findUnitsTodo(qaf, units=units, ..., verbose=less(verbose))
} else {
if (is.null(units)) {
unitsToDo <- units
} else {
unitsToDo <- seq_len(nbrOfUnits)
}
}
nbrOfUnits <- length(unitsToDo)
verbose && printf(verbose, "Number of units to do: %d\n", nbrOfUnits)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculate residuals in chunks
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
nbrOfChunks <- ceiling(nbrOfUnits / unitsPerChunk)
verbose && printf(verbose, "Number of chunks: %d (%d units/chunk)\n",
nbrOfChunks, unitsPerChunk)
head <- seq_len(unitsPerChunk)
count <- 1
while (length(unitsToDo) > 0) {
if (length(unitsToDo) < unitsPerChunk) {
head <- seq_along(unitsToDo)
}
units <- unitsToDo[head]
verbose && printf(verbose, "Chunk #%d of %d (%d units)\n",
count, nbrOfChunks, length(units))
verbose && enter(verbose, "Getting cell indices")
cdfList <- getCellIndices(cdf, units=units, stratifyBy="pm", ...)
verbose && str(verbose, cdfList[[1]])
verbose && exit(verbose)
verbose && enter(verbose, "Retrieving raw data")
rawDataList <- readUnits(ds, units=units, stratifyBy="pm", verbose=less(verbose))
verbose && str(verbose, rawDataList[[1]])
verbose && exit(verbose)
verbose && enter(verbose, "Retrieving chip-effect estimates")
chipEffectList <- readUnits(ces, units=units, verbose=less(verbose))
verbose && str(verbose, chipEffectList[[1]])
verbose && exit(verbose)
verbose && enter(verbose, "Retrieving probe-affinity estimates")
probeAffinityList <- readUnits(paf, units=units, verbose=less(verbose))
verbose && str(verbose, probeAffinityList[[1]])
verbose && exit(verbose)
verbose && enter(verbose, "Calculating residuals")
residualsList <- lapply(head, FUN=resFcn)
verbose && str(verbose, residualsList[[1]])
verbose && exit(verbose)
# Store residuals
for (kk in seq_along(pathnames)) {
# Back-transform data to intensity scale and encode as CEL structure
verbose && enter(verbose, "Encode as CEL structure")
data <- lapply(residualsList, FUN=function(groups) {
lapply(groups, FUN=function(group) {
eps <- .subset2(group, "eps")[,kk]
ones <- rep(1, times=length(eps))
list(intensities=eps, stdvs=ones, pixels=ones)
})
})
verbose && str(verbose, data[[1]])
verbose && exit(verbose)
pathname <- pathnames[kk]
if (!isFile(pathname)) {
df <- ds[[kk]]
celHeader <- .cdfHeaderToCelHeader(cdfHeader, sampleName=getName(df))
.createCel(pathname, header=celHeader, verbose=less(verbose))
}
verbose && enter(verbose, "updating file #", kk)
.updateCelUnits(pathname, cdf=cdfList, data=data)
verbose && exit(verbose)
} # for (kk ...)
unitsToDo <- unitsToDo[-head]
count <- count + 1
} # while (length(unitsToDo) > 0)
# Return residual set
res <- QualityAssessmentSet$byPath(path=path, ...,
pattern=",residuals[.][cC][eE][lL]$")
verbose && exit(verbose)
res
})
###########################################################################/**
# @RdocMethod getWeights
#
# @title "Calculates the weights from the robust fit to a probe-level model"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{path}{}
# \item{name}{}
# \item{tags}{}
# \item{...}{}
# \item{ram}{}
# \item{force}{}
# \item{verbose}{}
# }
#
# \value{
# Returns an @see "QualityAssessmentSet".
# }
#
# \seealso{
# @seeclass
# }
#*/###########################################################################
setMethodS3("getWeights", "QualityAssessmentModel", function(this, path=NULL, name="qcData", tags="*", ..., ram=NULL, force=FALSE, verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Local functions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Lookup MASS::psi.huber() once; '::' is expensive
MASS_psi.huber <- MASS::psi.huber
resFcn <- function(kk) {
yL <- .subset2(rawDataList, kk)
thetaL <- .subset2(chipEffectList, kk)
phiL <- .subset2(probeAffinityList, kk)
nbrOfGroups <- length(yL)
res <- lapply(nbrOfGroups, FUN=function(gg) {
y <- .subset2(.subset2(yL, gg), "intensities")
theta <- .subset2(.subset2(thetaL, gg), "theta")[1,]
phi <- .subset2(.subset2(phiL, gg), "phi")
yhat <- outer(phi, theta, FUN="+")
eps <- (y - yhat)
# mad <- 1.4826 * median(abs(yhat))
mad <- 1.4826 * median(abs(eps))
matrix(MASS_psi.huber(eps/mad), ncol=ncol(y))
})
res
} # resFcn()
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'path':
if (is.null(path)) {
cdf <- getCdf(this)
chipType <- getChipType(cdf, fullname=FALSE)
path <- file.path(name, getName(this), "weights", chipType)
}
if (!is.null(path)) {
path <- Arguments$getWritablePath(path)
}
# Argument 'ram':
ram <- getRam(aromaSettings, ram)
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose)
# Argument 'tags':
if (!is.null(tags)) {
tags <- Arguments$getCharacters(tags)
tags <- trim(unlist(strsplit(tags, split=",")))
# Update default tags
tags[tags == "*"] <- "weights"
}
# Argument 'unitsPerChunk':
unitsPerChunk <- ram * 100000/length(this)
unitsPerChunk <- Arguments$getInteger(unitsPerChunk, range=c(1,Inf))
# If residuals already calculated, and if force==FALSE, just return
# a CelSet with the previous calculations
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Generating output pathname
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
path <- Arguments$getWritablePath(path)
ces <- getChipEffectSet(this)
names <- getNames(ces)
pathname <- sapply(names, function(name) {
filename <- sprintf("%s,weights.CEL", name)
pathname <- Arguments$getWritablePathname(filename, path=path)
# Rename lower-case *.cel to *.CEL, if that is the case. Old versions
# of the package generated lower-case CEL files. /HB 2007-08-09
pathname <- AffymetrixFile$renameToUpperCaseExt(pathname)
})
nbrOfFiles <- length(pathname)
ds <- getDataSet(this)
ces <- getChipEffectSet(this)
paf <- getProbeAffinityFile(getPlm(this))
nbrOfUnits <- nbrOfUnits(getCdf(ces))
verbose && printf(verbose, "Number of units: %d\n", nbrOfUnits)
# find number of units to do; first check whether last file in list
# exists
if (isFile(pathname[nbrOfFiles])) {
qaf <- QualityAssessmentFile$fromFile(pathname[nbrOfFiles])
unitsToDo <- findUnitsTodo(qaf)
} else {
unitsToDo <- seq_len(nbrOfUnits)
}
nbrOfChunks <- ceiling(nbrOfUnits / unitsPerChunk)
verbose && printf(verbose, "Number of chunks: %d (%d units/chunk)\n",
nbrOfChunks, unitsPerChunk)
head <- seq_len(unitsPerChunk)
verbose && enter(verbose, "Extracting unit data")
count <- 1
while (length(unitsToDo) > 0) {
if (length(unitsToDo) < unitsPerChunk) {
head <- seq_along(unitsToDo)
}
units <- unitsToDo[head]
verbose && printf(verbose, "Chunk #%d of %d (%d units)\n",
count, nbrOfChunks, length(units))
logTransform <- rep(list(log2), times=length(this))
rawDataList <- readUnits(ds, units=units, transforms=logTransform, verbose=less(verbose), stratifyBy="pm")
chipEffectList <- readUnits(ces, units=units, transforms=logTransform, verbose=less(verbose))
probeAffinityList <- readUnits(paf, units=units, transforms=list(log2), verbose=verbose)
weightsList <- lapply(head, FUN=resFcn)
weightsList <- lapply(weightsList, FUN=.subset2, 1)
# update output files
cdf <- getCdf(ds)
cdfList <- getCellIndices(cdf, units=units, stratifyBy="pm", ...)
for (kk in seq_along(pathname)) {
# Create CEL file?
if (!isFile(pathname[kk])) {
cdfHeader <- getHeader(cdf)
dfKK <- ds[[kk]]
sampleName <- getName(dfKK)
celHeader <- .cdfHeaderToCelHeader(cdfHeader, sampleName=sampleName)
.createCel(pathname[kk], header=celHeader, verbose=less(verbose))
}
data <- lapply(weightsList, FUN=function(x){
nrow <- nrow(x)
list(list(
intensities=2^x[,kk],
stdvs=rep(1, times=nrow),
pixels=rep(1, times=nrow)
))
})
.updateCelUnits(pathname[kk], cdf=cdfList, data=data)
} # for (kk ...)
unitsToDo <- unitsToDo[-head]
count <- count + 1
} # while(...)
# Load output QA data set
res <- QualityAssessmentSet$byPath(path=path, pattern=",weights[.][cC][eE][lL]$")
res
}) # getWeights()
setMethodS3("plotNuse", "QualityAssessmentModel", function(this, ...) {
ces <- getChipEffectSet(this)
stats <- plotBoxplot(ces, type="NUSE", ...)
invisible(stats)
})
setMethodS3("plotRle", "QualityAssessmentModel", function(this, ...) {
ces <- getChipEffectSet(this)
stats <- plotBoxplot(ces, type="RLE", ...)
invisible(stats)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.