Nothing
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#' @include arrow-datum.R
#' @title Array Classes
#' @description An `Array` is an immutable data array with some logical type
#' and some length. Most logical types are contained in the base
#' `Array` class; there are also subclasses for `DictionaryArray`, `ListArray`,
#' and `StructArray`.
#' @usage NULL
#' @format NULL
#' @docType class
#'
#' @section Factory:
#' The `Array$create()` factory method instantiates an `Array` and
#' takes the following arguments:
#' * `x`: an R vector, list, or `data.frame`
#' * `type`: an optional [data type][data-type] for `x`. If omitted, the type
#' will be inferred from the data.
#'
#' `Array$create()` will return the appropriate subclass of `Array`, such as
#' `DictionaryArray` when given an R factor.
#'
#' To compose a `DictionaryArray` directly, call `DictionaryArray$create()`,
#' which takes two arguments:
#' * `x`: an R vector or `Array` of integers for the dictionary indices
#' * `dict`: an R vector or `Array` of dictionary values (like R factor levels
#' but not limited to strings only)
#' @section Usage:
#'
#' ```
#' a <- Array$create(x)
#' length(a)
#'
#' print(a)
#' a == a
#' ```
#'
#' @section Methods:
#'
#' - `$IsNull(i)`: Return true if value at index is null. Does not boundscheck
#' - `$IsValid(i)`: Return true if value at index is valid. Does not boundscheck
#' - `$length()`: Size in the number of elements this array contains
#' - `$nbytes()`: Total number of bytes consumed by the elements of the array
#' - `$offset`: A relative position into another array's data, to enable zero-copy slicing
#' - `$null_count`: The number of null entries in the array
#' - `$type`: logical type of data
#' - `$type_id()`: type id
#' - `$Equals(other)` : is this array equal to `other`
#' - `$ApproxEquals(other)` :
#' - `$Diff(other)` : return a string expressing the difference between two arrays
#' - `$data()`: return the underlying [ArrayData][ArrayData]
#' - `$as_vector()`: convert to an R vector
#' - `$ToString()`: string representation of the array
#' - `$Slice(offset, length = NULL)`: Construct a zero-copy slice of the array
#' with the indicated offset and length. If length is `NULL`, the slice goes
#' until the end of the array.
#' - `$Take(i)`: return an `Array` with values at positions given by integers
#' (R vector or Array Array) `i`.
#' - `$Filter(i, keep_na = TRUE)`: return an `Array` with values at positions where logical
#' vector (or Arrow boolean Array) `i` is `TRUE`.
#' - `$SortIndices(descending = FALSE)`: return an `Array` of integer positions that can be
#' used to rearrange the `Array` in ascending or descending order
#' - `$RangeEquals(other, start_idx, end_idx, other_start_idx)` :
#' - `$cast(target_type, safe = TRUE, options = cast_options(safe))`: Alter the
#' data in the array to change its type.
#' - `$View(type)`: Construct a zero-copy view of this array with the given type.
#' - `$Validate()` : Perform any validation checks to determine obvious inconsistencies
#' within the array's internal data. This can be an expensive check, potentially `O(length)`
#'
#' @rdname array-class
#' @examples
#' my_array <- Array$create(1:10)
#' my_array$type
#' my_array$cast(int8())
#'
#' # Check if value is null; zero-indexed
#' na_array <- Array$create(c(1:5, NA))
#' na_array$IsNull(0)
#' na_array$IsNull(5)
#' na_array$IsValid(5)
#' na_array$null_count
#'
#' # zero-copy slicing; the offset of the new Array will be the same as the index passed to $Slice
#' new_array <- na_array$Slice(5)
#' new_array$offset
#'
#' # Compare 2 arrays
#' na_array2 <- na_array
#' na_array2 == na_array # element-wise comparison
#' na_array2$Equals(na_array) # overall comparison
#' @export
Array <- R6Class("Array",
inherit = ArrowDatum,
public = list(
IsNull = function(i) Array__IsNull(self, i),
IsValid = function(i) Array__IsValid(self, i),
length = function() Array__length(self),
type_id = function() Array__type_id(self),
nbytes = function() Array__ReferencedBufferSize(self),
Equals = function(other, ...) {
inherits(other, "Array") && Array__Equals(self, other)
},
ApproxEquals = function(other) {
inherits(other, "Array") && Array__ApproxEquals(self, other)
},
Diff = function(other) {
if (!inherits(other, "Array")) {
other <- Array$create(other)
}
Array__Diff(self, other)
},
data = function() Array__data(self),
as_vector = function() Array__as_vector(self),
ToString = function() {
typ <- paste0("<", self$type$ToString(), ">")
paste(typ, Array__ToString(self), sep = "\n")
},
Slice = function(offset, length = NULL) {
if (is.null(length)) {
Array__Slice1(self, offset)
} else {
Array__Slice2(self, offset, length)
}
},
Take = function(i) {
if (is.numeric(i)) {
i <- as.integer(i)
}
if (is.integer(i)) {
i <- Array$create(i)
}
call_function("take", self, i)
},
Filter = function(i, keep_na = TRUE) {
if (is.logical(i)) {
i <- Array$create(i)
}
assert_is(i, "Array")
call_function("filter", self, i, options = list(keep_na = keep_na))
},
RangeEquals = function(other, start_idx, end_idx, other_start_idx = 0L) {
assert_is(other, "Array")
Array__RangeEquals(self, other, start_idx, end_idx, other_start_idx)
},
View = function(type) {
Array$create(Array__View(self, as_type(type)))
},
Same = function(other) Array__Same(self, other),
Validate = function() Array__Validate(self),
export_to_c = function(array_ptr, schema_ptr) ExportArray(self, array_ptr, schema_ptr)
),
active = list(
null_count = function() Array__null_count(self),
offset = function() Array__offset(self),
type = function() Array__type(self)
)
)
Array$create <- function(x, type = NULL) {
if (!is.null(type)) {
type <- as_type(type)
}
if (is.null(x) && is.null(type)) {
type <- null()
}
if (inherits(x, "Scalar")) {
out <- x$as_array()
if (!is.null(type)) {
out <- out$cast(type)
}
return(out)
}
if (is.null(type)) {
return(vec_to_Array(x, type))
}
# when a type is given, try to create a vector of the desired type. If that
# fails, attempt to cast and if casting is successful, suggest to the user
# to try casting manually. If the casting fails, return the original error
# message.
tryCatch(
vec_to_Array(x, type),
error = function(cnd) {
attempt <- try(vec_to_Array(x, NULL)$cast(type), silent = TRUE)
abort(
c(conditionMessage(cnd),
i = if (!inherits(attempt, "try-error")) {
"You might want to try casting manually with `Array$create(...)$cast(...)`."
}
)
)
}
)
}
#' @include arrowExports.R
Array$import_from_c <- ImportArray
#' Convert an object to an Arrow Array
#'
#' The `as_arrow_array()` function is identical to `Array$create()` except
#' that it is an S3 generic, which allows methods to be defined in other
#' packages to convert objects to [Array]. `Array$create()` is slightly faster
#' because it tries to convert in C++ before falling back on
#' `as_arrow_array()`.
#'
#' @param x An object to convert to an Arrow Array
#' @param ... Passed to S3 methods
#' @param type A [type][data-type] for the final Array. A value of `NULL`
#' will default to the type guessed by [infer_type()].
#'
#' @return An [Array] with type `type`.
#' @export
#'
#' @examples
#' as_arrow_array(1:5)
#'
as_arrow_array <- function(x, ..., type = NULL) {
UseMethod("as_arrow_array")
}
#' @export
as_arrow_array.default <- function(x, ..., type = NULL, from_vec_to_array = FALSE) {
# If from_vec_to_array is TRUE, this is a call from C++ after
# trying the internal C++ conversion and S3 dispatch has failed
# failed to find a method for the object. This call happens when creating
# Array, ChunkedArray, RecordBatch, and Table objects from data.frame
# if the internal C++ conversion (faster and can usually be parallelized)
# is not implemented. If the C++ call has reached this default method,
# we error. If from_vec_to_array is FALSE, we call vec_to_Array to use the
# internal C++ conversion.
if (from_vec_to_array) {
# Last ditch attempt: if vctrs::vec_is(x), we can use the vctrs
# extension type.
if (vctrs::vec_is(x) && is.null(type)) {
vctrs_extension_array(x)
} else if (vctrs::vec_is(x) && inherits(type, "VctrsExtensionType")) {
vctrs_extension_array(
x,
ptype = type$ptype(),
storage_type = type$storage_type()
)
} else {
stop_cant_convert_array(x, type)
}
} else {
vec_to_Array(x, type)
}
}
#' @rdname as_arrow_array
#' @export
as_arrow_array.Array <- function(x, ..., type = NULL) {
if (is.null(type)) {
x
} else {
x$cast(type)
}
}
#' @rdname as_arrow_array
#' @export
as_arrow_array.Scalar <- function(x, ..., type = NULL) {
as_arrow_array(x$as_array(), ..., type = type)
}
#' @rdname as_arrow_array
#' @export
as_arrow_array.ChunkedArray <- function(x, ..., type = NULL) {
concat_arrays(!!!x$chunks, type = type)
}
# data.frame conversion can happen in C++ when all the columns can be
# converted in C++ and when `type` is not an ExtensionType; however,
# when calling as_arrow_array(), this method will get called regardless
# of whether or not this can or can't happen.
#' @export
as_arrow_array.data.frame <- function(x, ..., type = NULL) {
type <- type %||% infer_type(x)
if (inherits(type, "VctrsExtensionType")) {
storage <- as_arrow_array(x, type = type$storage_type())
new_extension_array(storage, type)
} else if (inherits(type, "StructType")) {
fields <- type$fields()
names <- map_chr(fields, "name")
types <- map(fields, "type")
arrays <- Map(as_arrow_array, x, type = types)
names(arrays) <- names
StructArray$create(!!!arrays)
} else {
stop_cant_convert_array(x, type)
}
}
#' @export
as_arrow_array.vctrs_list_of <- function(x, ..., type = NULL) {
type <- type %||% infer_type(x)
if (!inherits(type, "ListType") && !inherits(type, "LargeListType")) {
stop_cant_convert_array(x, type)
}
as_arrow_array(unclass(x), type = type)
}
#' @export
as_arrow_array.blob <- function(x, ..., type = NULL) {
type <- type %||% infer_type(x)
if (!type$Equals(binary()) && !type$Equals(large_binary())) {
stop_cant_convert_array(x, type)
}
as_arrow_array(unclass(x), type = type)
}
stop_cant_convert_array <- function(x, type) {
if (is.null(type)) {
abort(
sprintf(
"Can't create Array from object of type %s",
paste(class(x), collapse = " / ")
),
call = caller_env()
)
} else {
abort(
sprintf(
"Can't create Array<%s> from object of type %s",
format(type$code()),
paste(class(x), collapse = " / ")
),
call = caller_env()
)
}
}
#' Concatenate zero or more Arrays
#'
#' Concatenates zero or more [Array] objects into a single
#' array. This operation will make a copy of its input; if you need
#' the behavior of a single Array but don't need a
#' single object, use [ChunkedArray].
#'
#' @param ... zero or more [Array] objects to concatenate
#' @param type An optional `type` describing the desired
#' type for the final Array.
#'
#' @return A single [Array]
#' @export
#'
#' @examples
#' concat_arrays(Array$create(1:3), Array$create(4:5))
concat_arrays <- function(..., type = NULL) {
dots <- lapply(list2(...), Array$create, type = type)
if (length(dots) == 0 && is.null(type)) {
return(Array$create(logical(), type = null()))
} else if (length(dots) == 0) {
return(Array$create(logical(), type = null())$cast(type))
}
if (!is.null(type)) {
dots <- lapply(dots, function(array) array$cast(type))
}
arrow__Concatenate(dots)
}
#' @rdname concat_arrays
#' @export
c.Array <- function(...) {
abort(c(
"Use `concat_arrays()` or `ChunkedArray$create()` instead.",
i = "`concat_arrays()` creates a new Array by copying data.",
i = "`ChunkedArray$create()` uses the arrays as chunks for zero-copy concatenation."
))
}
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
DictionaryArray <- R6Class("DictionaryArray",
inherit = Array,
public = list(
indices = function() DictionaryArray__indices(self),
dictionary = function() DictionaryArray__dictionary(self)
),
active = list(
ordered = function() self$type$ordered
)
)
DictionaryArray$create <- function(x, dict = NULL) {
if (is.factor(x)) {
# The simple case: converting a factor.
# Ignoring `dict`; should probably error if dict is not NULL
return(Array$create(x))
}
assert_that(!is.null(dict))
if (!is.Array(x)) {
x <- Array$create(x)
}
if (!is.Array(dict)) {
dict <- Array$create(dict)
}
type <- DictionaryType$create(x$type, dict$type)
DictionaryArray__FromArrays(type, x, dict)
}
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
StructArray <- R6Class("StructArray",
inherit = Array,
public = list(
field = function(i) StructArray__field(self, i),
GetFieldByName = function(name) StructArray__GetFieldByName(self, name),
Flatten = function() StructArray__Flatten(self)
)
)
StructArray$create <- function(...) {
data <- record_batch(...)
StructArray__from_RecordBatch(data)
}
#' @export
`[[.StructArray` <- function(x, i, ...) {
if (is.character(i)) {
x$GetFieldByName(i)
} else if (is.numeric(i)) {
x$field(i - 1)
} else {
stop("'i' must be character or numeric, not ", class(i), call. = FALSE)
}
}
#' @export
`$.StructArray` <- function(x, name, ...) {
assert_that(is.string(name))
if (name %in% ls(x)) {
get(name, x)
} else {
x$GetFieldByName(name)
}
}
#' @export
names.StructArray <- function(x, ...) StructType__field_names(x$type)
#' @export
dim.StructArray <- function(x, ...) c(length(x), x$type$num_fields)
#' @export
as.data.frame.StructArray <- function(x, row.names = NULL, optional = FALSE, ...) {
as.data.frame(collect.StructArray(x), row.names = row.names, optional = optional, ...)
}
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
ListArray <- R6Class("ListArray",
inherit = Array,
public = list(
values = function() ListArray__values(self),
value_length = function(i) ListArray__value_length(self, i),
value_offset = function(i) ListArray__value_offset(self, i),
raw_value_offsets = function() ListArray__raw_value_offsets(self)
),
active = list(
value_type = function() ListArray__value_type(self)
)
)
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
LargeListArray <- R6Class("LargeListArray",
inherit = Array,
public = list(
values = function() LargeListArray__values(self),
value_length = function(i) LargeListArray__value_length(self, i),
value_offset = function(i) LargeListArray__value_offset(self, i),
raw_value_offsets = function() LargeListArray__raw_value_offsets(self)
),
active = list(
value_type = function() LargeListArray__value_type(self)
)
)
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
FixedSizeListArray <- R6Class("FixedSizeListArray",
inherit = Array,
public = list(
values = function() FixedSizeListArray__values(self),
value_length = function(i) FixedSizeListArray__value_length(self, i),
value_offset = function(i) FixedSizeListArray__value_offset(self, i)
),
active = list(
value_type = function() FixedSizeListArray__value_type(self),
list_size = function() self$type$list_size
)
)
is.Array <- function(x, type = NULL) { # nolint
is_it <- inherits(x, c("Array", "ChunkedArray"))
if (is_it && !is.null(type)) {
is_it <- x$type$ToString() %in% type
}
is_it
}
#' @rdname array-class
#' @usage NULL
#' @format NULL
#' @export
MapArray <- R6Class("MapArray",
inherit = ListArray,
public = list(
keys = function() MapArray__keys(self),
items = function() MapArray__items(self),
keys_nested = function() MapArray__keys_nested(self),
items_nested = function() MapArray__items_nested(self)
)
)
#' Create an Arrow Array
#'
#' @param x An R object representable as an Arrow array, e.g. a vector, list, or `data.frame`.
#' @param type An optional [data type][data-type] for `x`. If omitted, the type will be inferred from the data.
#' @rdname arrow_array
#' @examples
#' my_array <- arrow_array(1:10)
#'
#' # Compare 2 arrays
#' na_array <- arrow_array(c(1:5, NA))
#' na_array2 <- na_array
#' na_array2 == na_array # element-wise comparison
#' @export
arrow_array <- Array$create
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.