Nothing
#' OSLOM community finding
#'
#' This function finds communities in a (un)weighted (un)directed network based
#' on the OSLOM algorithm (<http://oslom.org/>, version 2.4).
#'
#' @param net The output object from [similarity()] or
#' [dissimilarity_to_similarity()].
#' If a `data.frame` is used, the first two columns represent pairs of
#' sites (or any pair of nodes), and the next column(s) are the similarity
#' indices.
#'
#' @param weight A `boolean` indicating if the weights should be considered
#' if there are more than two columns.
#'
#' @param cut_weight A minimal weight value. If `weight` is TRUE, the links
#' between sites with a weight strictly lower than this value will not be
#' considered (0 by default).
#'
#' @param index Name or number of the column to use as weight. By default,
#' the third column name of `net` is used.
#'
#' @param seed For the random number generator (NULL for random by default).
#'
#' @param reassign A `character` indicating if the nodes belonging to several
#' community should be reassigned and what method should be used (see Note).
#'
#' @param r The number of runs for the first hierarchical level
#' (10 by default).
#'
#' @param hr The number of runs for the higher hierarchical level (50 by
#' default, 0 if you are not interested in hierarchies).
#'
#' @param t The p-value, the default value is 0.10. Increase this value if you want
#' more modules.
#'
#' @param cp Kind of resolution parameter used to decide between taking some
#' modules or their union (default value is 0.5; a bigger value leads to bigger
#' clusters).
#'
#' @param directed A `boolean` indicating if the network is directed (from
#' column 1 to column 2).
#'
#' @param bipartite A `boolean` indicating if the network is bipartite
#' (see Details).
#'
#' @param site_col Name or number for the column of site nodes
#' (i.e. primary nodes).
#'
#' @param species_col Name or number for the column of species nodes
#' (i.e. feature nodes).
#'
#' @param return_node_type A `character` indicating what types of nodes
#' (`site`, `species`, or `both`) should be returned in the output
#' (`return_node_type = "both"` by default).
#'
#' @param binpath A `character` indicating the path to the bin folder
#' (see [install_binaries] and Details).
#'
#' @param check_install A `boolean` indicating if the function should check that
#' the OSLOM has been properly installed (see [install_binaries] and Details).
#'
#' @param path_temp A `character` indicating the path to the temporary folder
#' (see Details).
#'
#' @param delete_temp A `boolean` indicating if the temporary folder should
#' be removed (see Details).
#'
#' @return
#' A `list` of class `bioregion.clusters` with five slots:
#' \enumerate{
#' \item{**name**: A `character` containing the name of the algorithm.}
#' \item{**args**: A `list` of input arguments as provided by the user.}
#' \item{**inputs**: A `list` of characteristics of the clustering process.}
#' \item{**algorithm**: A `list` of all objects associated with the
#' clustering procedure, such as original cluster objects (only if
#' `algorithm_in_output = TRUE`).}
#' \item{**clusters**: A `data.frame` containing the clustering results.}}
#'
#' In the `algorithm` slot, users can find the following elements:
#'
#' \itemize{
#' \item{`cmd`: The command line used to run OSLOM.}
#' \item{`version`: The OSLOM version.}
#' \item{`web`: The OSLOM's web site.}
#' }
#'
#' @details
#' OSLOM is a network community detection algorithm proposed in
#' Lancichinetti et al. (2011) that finds statistically significant
#' (overlapping) communities in (un)weighted and (un)directed networks.
#'
#' This function is based on the 2.4 C++ version of OSLOM
#' (<http://www.oslom.org/software.htm>). This function needs files
#' to run. They can be installed with [install_binaries].
#'
#' **If you changed the default path to the `bin` folder
#' while running [install_binaries], PLEASE MAKE SURE to set `binpath`
#' accordingly.**
#'
#' **If you did not use [install_binaries] to change the permissions and test
#' the binary files, PLEASE MAKE SURE to set `check_install` accordingly.**
#'
#' The C++ version of OSLOM generates temporary folders and/or files that are
#' stored in the `path_temp` folder (folder "oslom_temp" with a unique timestamp
#' located in the bin folder in `binpath` by default). This temporary folder is
#' removed by default (`delete_temp = TRUE`).
#'
#' @note
#' Although this algorithm was not primarily designed to deal with bipartite
#' networks, it is possible to consider the bipartite network as unipartite
#' network (`bipartite = TRUE`). Do not forget to indicate which of the
#' first two columns is dedicated to the site nodes (i.e. primary nodes) and
#' species nodes (i.e. feature nodes) using the arguments `site_col` and
#' `species_col`. The type of nodes returned in the output can be chosen
#' with the argument `return_node_type` equal to `both` to keep both
#' types of nodes, `sites` to preserve only the sites nodes, and
#' `species` to preserve only the species nodes.
#'
#' Since OSLOM potentially returns overlapping communities, we propose two
#' methods to reassign the 'overlapping' nodes: randomly (`reassign = "random"`)
#' or based on the closest candidate community (`reassign = "simil"`) (only for
#' weighted networks, in this case the closest candidate community is
#' determined with the average similarity). By default, `reassign = "no"` and
#' all the information will be provided. The number of partitions will depend
#' on the number of overlapping modules (up to three). The suffix `_semel`,
#' `_bis`, and `_ter` are added to the column names. The first partition
#' (`_semel`) assigns a module to each node. A value of `NA` in the second
#' (`_bis`) and third (`_ter`) columns indicates that no overlapping module
#' was found for this node (i.e. non-overlapping nodes).
#'
#' @references
#' Lancichinetti A, Radicchi F, Ramasco JJ & Fortunato S (2011) Finding
#' statistically significant communities in networks. \emph{PLOS ONE} 6,
#' e18961.
#'
#' @seealso
#' For more details illustrated with a practical example,
#' see the vignette:
#' \url{https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html}.
#'
#' Associated functions:
#' [netclu_greedy] [netclu_infomap] [netclu_louvain]
#'
#' @author
#' Maxime Lenormand (\email{maxime.lenormand@inrae.fr}) \cr
#' Pierre Denelle (\email{pierre.denelle@gmail.com}) \cr
#' Boris Leroy (\email{leroy.boris@gmail.com})
#'
#' @examples
#' comat <- matrix(sample(1000, 50), 5, 10)
#' rownames(comat) <- paste0("Site", 1:5)
#' colnames(comat) <- paste0("Species", 1:10)
#'
#' net <- similarity(comat, metric = "Simpson")
#' com <- netclu_oslom(net)
#'
#' @export
netclu_oslom <- function(net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
reassign = "no",
r = 10,
hr = 50,
t = 0.1,
cp = 0.5,
directed = FALSE,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
binpath = "tempdir",
check_install = TRUE,
path_temp = "oslom_temp",
delete_temp = TRUE) {
# Control and set binpath
controls(args = binpath, data = NULL, type = "character")
controls(args = check_install, data = NULL, type = "boolean")
controls(args = path_temp, data = NULL, type = "character")
controls(args = delete_temp, data = NULL, type = "boolean")
if (binpath == "tempdir") {
binpath <- tempdir()
} else if (binpath == "pkgfolder") {
binpath <- paste0(.libPaths()[1], "/bioregion")
} else {
if (!dir.exists(binpath)) {
stop(paste0("Impossible to access ", binpath), call. = FALSE)
}
}
binpath <- normalizePath(binpath)
# Check OS
os <- Sys.info()[["sysname"]]
# Check if OSLOM has successfully been installed
check <- FALSE
controls(args = directed, data = NULL, type = "boolean")
if (!directed) {
if (check_install &
!file.exists(paste0(binpath, "/bin/OSLOM/check.txt"))) {
message(paste0("OSLOM is not installed... Please have a look at ",
"https://bioRgeo.github.io/bioregion/articles/a1_install_binary_files.html ",
"for more details.\n",
"It should be located in ",
binpath,
"/bin/OSLOM/"))
} else {
check <- TRUE
}
} else {
if (check_install &
!file.exists(paste0(binpath, "/bin/OSLOM/check.txt"))) {
message(paste0("OSLOM is not installed... Please have a look at ",
"https://bioRgeo.github.io/bioregion/articles/a3_1_install_binary_files.html ",
"for more details."))
} else {
if (!file.exists(paste0(binpath, "/bin/OSLOM/checkdir.txt"))) {
message(paste0("The directed version of OSLOM is not installed... ",
" Please have a look at ",
"https://bioRgeo.github.io/bioregion/articles/a3_1_install_binary_files.html ",
"for more details"))
} else {
check <- TRUE
}
}
}
if (check) {
# Control parameters OSLOM
controls(args = reassign, data = NULL, type = "character")
if (!(reassign %in% c("no", "random", "simil"))) {
stop(paste0("Please choose reassign from the following:\n",
"no, random or simil."),
call. = FALSE)
}
controls(args = r, data = NULL, type = "strict_positive_integer")
controls(args = hr, data = NULL, type = "positive_integer")
if(!is.null(seed)){
controls(args = seed, data = NULL, type = "strict_positive_integer")
}
controls(args = t, data = NULL, type = "strict_positive_numeric")
if (t >= 1) {
stop("t must be in the interval (0,1)!", call. = FALSE)
}
controls(args = cp, data = NULL, type = "strict_positive_numeric")
if (cp >= 1) {
stop("cp must be in the interval (0,1)!", call. = FALSE)
}
# Control input net (+ check similarity if not bipartite)
controls(args = bipartite, data = NULL, type = "boolean")
isbip <- bipartite
if(!isbip){
controls(args = NULL, data = net, type = "input_similarity")
}
controls(args = NULL, data = net, type = "input_net")
# Convert tibble into dataframe
if(inherits(net, "tbl_df")){
net <- as.data.frame(net)
}
# Control input weight & index
controls(args = weight, data = net, type = "input_net_weight")
if (reassign == "simil" & !weight) {
stop(paste0("A reassignement based on similarity should not be ",
"use when weight equal FALSE"))
}
if (weight) {
controls(args = cut_weight, data = net, type = "positive_numeric")
controls(args = index, data = net, type = "input_net_index")
net[, 3] <- net[, index]
net <- net[, 1:3]
controls(args = NULL, data = net, type = "input_net_index_positive_value")
}
# Control input bipartite
if (isbip) {
controls(args = NULL, data = net, type = "input_net_bip")
if(site_col == species_col){
stop("site_col and species_col should not be the same.", call. = FALSE)
}
controls(args = site_col, data = net, type = "input_net_bip_col")
controls(args = species_col, data = net, type = "input_net_bip_col")
controls(args = return_node_type, data = NULL, type = "character")
if (!(return_node_type %in% c("both", "site", "species"))) {
stop(paste0("Please choose return_node_type from the following:\n",
"both, sites or species."),
call. = FALSE)
}
}
# Control input directed
if (!isbip) {
controls(args = NULL, data = net, type = "input_net_isloop")
controls(args = directed, data = net, type = "input_net_directed")
} else {
if (directed) {
stop("directed cannot be set to TRUE if the network is bipartite!",
call. = FALSE
)
}
}
# Control temp folder
old_path_temp <- path_temp
if (path_temp == "oslom_temp") {
fold_temp <- paste0(path_temp,
"_",
round(as.numeric(as.POSIXct(Sys.time()))))
path_temp <- paste0(
binpath,
"/bin/",
fold_temp
)
} else {
if (dir.exists(path_temp)) {
stop(paste0(path_temp,
" already exists. Please rename ",
"it or remove it."),
call. = FALSE
)
}
}
path_temp <- normalizePath(path_temp, mustWork = FALSE)
dir.create(path_temp, showWarnings = FALSE, recursive = TRUE)
if (!dir.exists(path_temp)) {
stop(paste0("Impossible to create directory ", path_temp), call. = FALSE)
}
# Prepare input for OSLOM
if (isbip) {
idprim <- as.character(net[, site_col])
idprim <- idprim[!duplicated(idprim)]
nbsites <- length(idprim)
idfeat <- as.character(net[, species_col])
idfeat <- idfeat[!duplicated(idfeat)]
idnode <- c(idprim, idfeat)
idnode <- data.frame(ID = 1:length(idnode), ID_NODE = idnode)
netemp <- data.frame(
node1 = idnode[match(net[, site_col], idnode[, 2]), 1],
node2 = idnode[match(net[, species_col], idnode[, 2]), 1]
)
} else {
idnode1 <- as.character(net[, 1])
idnode2 <- as.character(net[, 2])
idnode <- c(idnode1, idnode2)
idnode <- idnode[!duplicated(idnode)]
nbsites <- length(idnode)
idnode <- data.frame(ID = 1:length(idnode), ID_NODE = idnode)
netemp <- data.frame(
node1 = idnode[match(net[, 1], idnode[, 2]), 1],
node2 = idnode[match(net[, 2], idnode[, 2]), 1]
)
}
if (weight) {
netemp <- cbind(netemp, net[, 3])
netemp <- netemp[netemp[, 3] > cut_weight, ]
}
# Class preparation
outputs <- list(name = "netclu_oslom")
outputs$args <- list(
weight = weight,
cut_weight = cut_weight,
index = index,
seed = seed,
reassign = reassign,
r = r,
hr = hr,
t = t,
cp = cp,
directed = directed,
bipartite = bipartite,
site_col = site_col,
species_col = species_col,
return_node_type = return_node_type,
binpath = binpath,
check_install = check_install,
delete_temp = delete_temp,
path_temp = path_temp
)
outputs$inputs <- list(
bipartite = isbip,
weight = weight,
pairwise = ifelse(isbip, FALSE, TRUE),
pairwise_metric = ifelse(!isbip & weight,
ifelse(is.numeric(index), names(net)[3], index),
NA),
dissimilarity = FALSE,
nb_sites = nbsites,
hierarchical = FALSE
)
outputs$algorithm <- list()
# Export input for OSLOM
utils::write.table(netemp, paste0(path_temp, "/net.txt"),
row.names = FALSE,
col.names = FALSE, sep = " "
)
# Prepare command to run OSLOM
if(is.null(seed)){
cmd <- paste0(
"-r ", r,
" -hr ", hr,
" -t ", t,
" -cp ",
cp
)
}else{
cmd <- paste0(
"-r ", r,
" -hr ", hr,
" -seed ", seed,
" -t ", t,
" -cp ",
cp
)
}
# Run OSLOM
if (os == "Linux") {
if (weight) {
cmd <- paste0("-f ", path_temp, "/net.txt -w ", cmd)
} else {
cmd <- paste0("-f ", path_temp, "/net.txt -uw ", cmd)
}
if (directed) {
cmd <- paste0(
binpath, "/bin/OSLOM/oslom_dir_lin ", cmd,
" > /dev/null 2>&1"
)
} else {
cmd <- paste0(
binpath, "/bin/OSLOM/oslom_undir_lin ", cmd,
" > /dev/null 2>&1"
)
}
system(command = cmd)
} else if (os == "Windows") {
if (weight) {
cmd <- paste0("-f ", path_temp, "/net.txt -w ", cmd)
} else {
cmd <- paste0("-f ", path_temp, "/net.txt -uw ", cmd)
}
if (directed) {
cmd <- paste0(binpath, "/bin/OSLOM/oslom_dir_win.exe ", cmd)
} else {
cmd <- paste0(binpath, "/bin/OSLOM/oslom_undir_win.exe ", cmd)
}
dir.create(paste0(path_temp, "/net.txt_oslo_files"),
showWarnings = FALSE, recursive = TRUE
)
system(command = cmd, show.output.on.console = FALSE)
} else if (os == "Darwin") {
if(old_path_temp == "oslom_temp"){
if (weight) {
cmd <- paste0("-f ", fold_temp, "/net.txt -w ", cmd)
} else {
cmd <- paste0("-f ", fold_temp, "/net.txt -uw ", cmd)
}
if (directed) {
cmd1 <- paste0("cd ", binpath, "/bin >/dev/null 2>&1")
cmd2 <- paste0("OSLOM/oslom_dir_mac ", cmd, " > /dev/null 2>&1")
cmd <- paste0(cmd1, " && ", cmd2)
} else {
cmd1 <- paste0("cd ", binpath, "/bin >/dev/null 2>&1")
cmd2 <- paste0("OSLOM/oslom_undir_mac ", cmd, " > /dev/null 2>&1")
cmd <- paste0(cmd1, " && ", cmd2)
}
}else{
if (weight) {
cmd <- paste0("-f ", path_temp, "/net.txt -w ", cmd)
} else {
cmd <- paste0("-f ", path_temp, "/net.txt -uw ", cmd)
}
if (directed) {
cmd <- paste0(
binpath, "/bin/OSLOM/oslom_dir_mac ", cmd,
" > /dev/null 2>&1"
)
} else {
cmd <- paste0(
binpath, "/bin/OSLOM/oslom_undir_mac ", cmd,
" > /dev/null 2>&1"
)
}
}
system(command = cmd)
} else {
stop("Linux, Windows or Mac distributions only.")
}
# Control: if the command line did not work
if (!("tp" %in% list.files(paste0(path_temp, "/net.txt_oslo_files")))) {
stop("Command line was wrongly implemented. OSLOM did not run.",
call. = FALSE)
}
# Number of levels
nblev <- 1
# Retrieve output from tp [TO COMMENT]
com <- readLines(paste0(path_temp, "/net.txt_oslo_files/tp"))
cl <- list()
length(cl) <- length(com) / 2
for (k in 1:length(com)) {
if ((k / 2 - trunc(k / 2)) == 0) {
cl[[(k / 2)]] <- as.numeric(as.matrix(strsplit(com[k],
split = " "
)[[1]]))
}
}
tab <- unlist(cl)
tab <- sort(tab[!duplicated(tab)])
tab <- cbind(tab, 0, 0, 0)
n <- nrow(tab)
dupl <- rep(0, n)
for (i in 1:length(cl)) {
temp <- rep(0, n)
temp[match(cl[[i]], tab[, 1])] <- i
dupl <- dupl + 1 * (temp > 0)
tab[match(cl[[i]], tab[, 1]), 2] <- i
}
for (i in 1:n) {
if (dupl[i] > 1) {
overcom <- NULL
for (j in 1:length(cl)) {
if (sum(cl[[j]] == tab[i, 1]) == 1) {
overcom <- c(overcom, j)
}
}
if (reassign == "random") {
overcom <- overcom[sample(length(overcom), length(overcom))]
}
tab[i, 2] <- overcom[1]
tab[i, 3] <- overcom[2]
if (dupl[i] == 3) {
tab[i, 4] <- overcom[3]
}
}
}
# Reassign tp [TO COMMENT]
if (reassign == "simil") {
dat <- netemp
for (i in 1:n) {
if (tab[i, 3] > 0) {
test1 <- sum(dat[, 1] == tab[i, 1])
if (test1 == 0) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
} else if (test1 == 1) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
dati1[1, ] <- as.numeric(dat[dat[, 1] == tab[i, 1], c(2, 3)])
} else {
dati1 <- dat[dat[, 1] == tab[i, 1], c(2, 3)]
}
colnames(dati1) <- c("ID", "SIM")
test2 <- sum(dat[, 2] == tab[i, 1])
if (test2 == 0) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
} else if (test2 == 1) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
dati2[1, ] <- as.numeric(dat[dat[, 2] == tab[i, 1], c(1, 3)])
} else {
dati2 <- dat[dat[, 2] == tab[i, 1], c(1, 3)]
}
colnames(dati2) <- c("ID", "SIM")
dati <- rbind(dati1, dati2)
check <- match(cl[[tab[i, 2]]], dati[, 1])
check <- check[!is.na(check)]
sim1 <- mean(dati[check, 2])
check <- match(cl[[tab[i, 3]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 3]
sim1 <- sim2
}
if (tab[i, 4] > 0) {
check <- match(cl[[tab[i, 4]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 4]
}
}
}
}
tabtp <- tab[, 1:2]
} else if (reassign == "random") {
tabtp <- tab[, 1:2]
} else {
tabtp <- tab
}
# Reshape tabtp
comtp <- data.frame(ID = idnode[, 2], Com1 = 0)
comtp[match(tabtp[, 1], idnode[, 1]), 2] <- tabtp[, 2]
if (dim(tabtp)[2] > 2) {
if (sum(tabtp[, 3]) > 0) {
comtp$Com2 <- 0
comtp[match(tabtp[, 1], idnode[, 1]), 3] <- tabtp[, 3]
}
if (sum(tabtp[, 4]) > 0) {
comtp$Com3 <- 0
comtp[match(tabtp[, 1], idnode[, 1]), 4] <- tabtp[, 4]
}
}
com <- comtp
# If tp1 exists (i.e. hierarchical level)
if ("tp1" %in% list.files(paste0(path_temp, "/net.txt_oslo_files"))) {
# Number of levels
nblev <- 2
# Retrieve output from tp1 [TO COMMENT]
com <- readLines(paste0(path_temp, "/net.txt_oslo_files/tp1"))
cl <- list()
length(cl) <- length(com) / 2
for (k in 1:length(com)) {
if ((k / 2 - trunc(k / 2)) == 0) {
cl[[(k / 2)]] <- as.numeric(as.matrix(strsplit(com[k],
split = " "
)[[1]]))
}
}
tab <- unlist(cl)
tab <- sort(tab[!duplicated(tab)])
tab <- cbind(tab, 0, 0, 0)
n <- nrow(tab)
dupl <- rep(0, n)
for (i in 1:length(cl)) {
temp <- rep(0, n)
temp[match(cl[[i]], tab[, 1])] <- i
dupl <- dupl + 1 * (temp > 0)
tab[match(cl[[i]], tab[, 1]), 2] <- i
}
for (i in 1:n) {
if (dupl[i] > 1) {
overcom <- NULL
for (j in 1:length(cl)) {
if (sum(cl[[j]] == tab[i, 1]) == 1) {
overcom <- c(overcom, j)
}
}
if (reassign == "random") {
overcom <- overcom[sample(length(overcom), length(overcom))]
}
tab[i, 2] <- overcom[1]
tab[i, 3] <- overcom[2]
if (dupl[i] == 3) {
tab[i, 4] <- overcom[3]
}
}
}
# Reassign tp1 [TO COMMENT]
if (reassign == "simil") {
dat <- netemp
for (i in 1:n) {
if (tab[i, 3] > 0) {
test1 <- sum(dat[, 1] == tab[i, 1])
if (test1 == 0) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
} else if (test1 == 1) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
dati1[1, ] <- as.numeric(dat[dat[, 1] == tab[i, 1], c(2, 3)])
} else {
dati1 <- dat[dat[, 1] == tab[i, 1], c(2, 3)]
}
colnames(dati1) <- c("ID", "SIM")
test2 <- sum(dat[, 2] == tab[i, 1])
if (test2 == 0) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
} else if (test2 == 1) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
dati2[1, ] <- as.numeric(dat[dat[, 2] == tab[i, 1], c(1, 3)])
} else {
dati2 <- dat[dat[, 2] == tab[i, 1], c(1, 3)]
}
colnames(dati2) <- c("ID", "SIM")
dati <- rbind(dati1, dati2)
check <- match(cl[[tab[i, 2]]], dati[, 1])
check <- check[!is.na(check)]
sim1 <- mean(dati[check, 2])
check <- match(cl[[tab[i, 3]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 3]
sim1 <- sim2
}
if (tab[i, 4] > 0) {
check <- match(cl[[tab[i, 4]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 4]
}
}
}
}
tabtph <- tab[, 1:2]
} else if (reassign == "random") {
tabtph <- tab[, 1:2]
} else {
tabtph <- tab
}
# Reshape tabtp1
comtph <- data.frame(ID = idnode[, 2], HCom1 = 0)
comtph[match(tabtph[, 1], idnode[, 1]), 2] <- tabtph[, 2]
if (dim(tabtph)[2] > 2) {
if (sum(tabtph[, 3]) > 0) {
comtph$HCom2 <- 0
comtph[match(tabtph[, 1], idnode[, 1]), 3] <- tabtph[, 3]
}
if (sum(tabtph[, 4]) > 0) {
comtph$HCom3 <- 0
comtph[match(tabtph[, 1], idnode[, 1]), 4] <- tabtph[, 4]
}
}
com <- cbind(comtp, comtph)
com <- com[, -(dim(comtp)[2] + 1)]
}
# If tp2 exists (i.e. hierarchical level)
if ("tp2" %in% list.files(paste0(path_temp, "/oslomnet.txt_oslo_files"))) {
# Number of levels
nblev <- 3
# Retrieve output from tp2 [TO COMMENT]
com <- readLines(paste0(path_temp, "/net.txt_oslo_files/tp2"))
cl <- list()
length(cl) <- length(com) / 2
for (k in 1:length(com)) {
if ((k / 2 - trunc(k / 2)) == 0) {
cl[[(k / 2)]] <- as.numeric(as.matrix(strsplit(com[k],
split = " "
)[[1]]))
}
}
tab <- unlist(cl)
tab <- sort(tab[!duplicated(tab)])
tab <- cbind(tab, 0, 0, 0)
n <- nrow(tab)
dupl <- rep(0, n)
for (i in 1:length(cl)) {
temp <- rep(0, n)
temp[match(cl[[i]], tab[, 1])] <- i
dupl <- dupl + 1 * (temp > 0)
tab[match(cl[[i]], tab[, 1]), 2] <- i
}
for (i in 1:n) {
if (dupl[i] > 1) {
overcom <- NULL
for (j in 1:length(cl)) {
if (sum(cl[[j]] == tab[i, 1]) == 1) {
overcom <- c(overcom, j)
}
}
if (reassign == "random") {
overcom <- overcom[sample(length(overcom), length(overcom))]
}
tab[i, 2] <- overcom[1]
tab[i, 3] <- overcom[2]
if (dupl[i] == 3) {
tab[i, 4] <- overcom[3]
}
}
}
# Reassign tp2 [TO COMMENT]
if (reassign == "simil") {
dat <- netemp
for (i in 1:n) {
if (tab[i, 3] > 0) {
test1 <- sum(dat[, 1] == tab[i, 1])
if (test1 == 0) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
} else if (test1 == 1) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
dati1[1, ] <- as.numeric(dat[dat[, 1] == tab[i, 1], c(2, 3)])
} else {
dati1 <- dat[dat[, 1] == tab[i, 1], c(2, 3)]
}
colnames(dati1) <- c("ID", "SIM")
test2 <- sum(dat[, 2] == tab[i, 1])
if (test2 == 0) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
} else if (test2 == 1) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
dati2[1, ] <- as.numeric(dat[dat[, 2] == tab[i, 1], c(1, 3)])
} else {
dati2 <- dat[dat[, 2] == tab[i, 1], c(1, 3)]
}
colnames(dati2) <- c("ID", "SIM")
dati <- rbind(dati1, dati2)
check <- match(cl[[tab[i, 2]]], dati[, 1])
check <- check[!is.na(check)]
sim1 <- mean(dati[check, 2])
check <- match(cl[[tab[i, 3]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 3]
sim1 <- sim2
}
if (tab[i, 4] > 0) {
check <- match(cl[[tab[i, 4]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 4]
}
}
}
}
tabtphh <- tab[, 1:2]
} else if (reassign == "random") {
tabtphh <- tab[, 1:2]
} else {
tabtphh <- tab
}
# Reshape tabtp2
comtphh <- data.frame(ID = idnode[, 2], HHCom1 = 0)
comtphh[match(tabtphh[, 1], idnode[, 1]), 2] <- tabtphh[, 2]
if (dim(tabtphh)[2] > 2) {
if (sum(tabtphh[, 3]) > 0) {
comtphh$HHCom2 <- 0
comtphh[match(tabtphh[, 1], idnode[, 1]), 3] <- tabtphh[, 3]
}
if (sum(tabtphh[, 4]) > 0) {
comtphh$HHCom3 <- 0
comtphh[match(tabtphh[, 1], idnode[, 1]), 4] <- tabtphh[, 4]
}
}
com <- cbind(comtp, comtph, comtphh)
com <- com[, -c(
(dim(comtp)[2] + 1),
(dim(comtp)[2] + dim(comtph)[2] + 1)
)]
}
# If tp3 exists (i.e. hierarchical level)
if ("tp3" %in% list.files(paste0(path_temp, "/net.txt_oslo_files"))) {
# Number of levels
nblev <- 4
# Retrieve output from tp3 [TO COMMENT]
com <- readLines(paste0(path_temp, "/net.txt_oslo_files/tp3"))
cl <- list()
length(cl) <- length(com) / 2
for (k in 1:length(com)) {
if ((k / 2 - trunc(k / 2)) == 0) {
cl[[(k / 2)]] <- as.numeric(as.matrix(strsplit(com[k],
split = " "
)[[1]]))
}
}
tab <- unlist(cl)
tab <- sort(tab[!duplicated(tab)])
tab <- cbind(tab, 0, 0, 0)
n <- nrow(tab)
dupl <- rep(0, n)
for (i in 1:length(cl)) {
temp <- rep(0, n)
temp[match(cl[[i]], tab[, 1])] <- i
dupl <- dupl + 1 * (temp > 0)
tab[match(cl[[i]], tab[, 1]), 2] <- i
}
for (i in 1:n) {
if (dupl[i] > 1) {
overcom <- NULL
for (j in 1:length(cl)) {
if (sum(cl[[j]] == tab[i, 1]) == 1) {
overcom <- c(overcom, j)
}
}
if (reassign == "random") {
overcom <- overcom[sample(length(overcom), length(overcom))]
}
tab[i, 2] <- overcom[1]
tab[i, 3] <- overcom[2]
if (dupl[i] == 3) {
tab[i, 4] <- overcom[3]
}
}
}
# Reassign tp3 [TO COMMENT]
if (reassign == "simil") {
dat <- netemp
for (i in 1:n) {
if (tab[i, 3] > 0) {
test1 <- sum(dat[, 1] == tab[i, 1])
if (test1 == 0) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
} else if (test1 == 1) {
dati1 <- matrix(0, nrow = 2, ncol = 2)
dati1[1, ] <- as.numeric(dat[dat[, 1] == tab[i, 1], c(2, 3)])
} else {
dati1 <- dat[dat[, 1] == tab[i, 1], c(2, 3)]
}
colnames(dati1) <- c("ID", "SIM")
test2 <- sum(dat[, 2] == tab[i, 1])
if (test2 == 0) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
} else if (test2 == 1) {
dati2 <- matrix(0, nrow = 2, ncol = 2)
dati2[1, ] <- as.numeric(dat[dat[, 2] == tab[i, 1], c(1, 3)])
} else {
dati2 <- dat[dat[, 2] == tab[i, 1], c(1, 3)]
}
colnames(dati2) <- c("ID", "SIM")
dati <- rbind(dati1, dati2)
check <- match(cl[[tab[i, 2]]], dati[, 1])
check <- check[!is.na(check)]
sim1 <- mean(dati[check, 2])
check <- match(cl[[tab[i, 3]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 3]
sim1 <- sim2
}
if (tab[i, 4] > 0) {
check <- match(cl[[tab[i, 4]]], dati[, 1])
check <- check[!is.na(check)]
sim2 <- mean(dati[check, 2])
if (sim2 > sim1) {
tab[i, 2] <- tab[i, 4]
}
}
}
}
tabtphhh <- tab[, 1:2]
} else if (reassign == "random") {
tabtphhh <- tab[, 1:2]
} else {
tabtphhh <- tab
}
# Reshape tabtp3
comtphhh <- data.frame(ID = idnode[, 2], HHHCom1 = 0)
comtphhh[match(tabtphhh[, 1], idnode[, 1]), 2] <- tabtphhh[, 2]
if (dim(tabtphhh)[2] > 2) {
if (sum(tabtphhh[, 3]) > 0) {
comtphhh$HHHCom2 <- 0
comtphhh[match(tabtphhh[, 1], idnode[, 1]), 3] <- tabtphhh[, 3]
}
if (sum(tabtphhh[, 4]) > 0) {
comtphhh$HHHCom3 <- 0
comtphhh[match(tabtphhh[, 1], idnode[, 1]), 4] <- tabtphhh[, 4]
}
}
com <- cbind(comtp, comtph, comtphh, comtphhh)
com <- com[, -c(
(dim(comtp)[2] + 1),
(dim(comtp)[2] + dim(comtph)[2] + 1),
(dim(comtp)[2] + dim(comtph)[2] + dim(comtphh) + 1)
)]
}
# Remove temporary files
if (delete_temp) {
unlink(paste0(path_temp), recursive = TRUE)
}
unlink("tp")
unlink("time_seed.dat")
# Rename and reorder columns
com <- as.character(comtp[, 1])
tempnblev <- 1
if (nblev >= 4) {
nov <- dim(comtphhh)[2] - 1
if (nov == 1) {
colnames(comtphhh)[2] <- paste0("K_", max(comtphhh[, 2]))
com <- cbind(com, comtphhh[, 2])
colnames(com)[dim(com)[2]] <- paste0("K_", max(comtphhh))
} else {
colnames(comtphhh)[2] <- paste0("K_", max(comtphhh[, 2]), "_semel")
if (nov >= 2) {
colnames(comtphhh)[3] <- paste0("K_", max(comtphhh[, 2]), "_bis")
}
if (nov == 3) {
colnames(comtphhh)[4] <- paste0("K_", max(comtphhh[, 2]), "_ter")
}
com <- cbind(com, comtphhh[, -1])
}
tempnblev <- tempnblev + 1
}
if (nblev >= 3) {
nov <- dim(comtphh)[2] - 1
if (nov == 1) {
colnames(comtphh)[2] <- paste0("K_", max(comtphh[, 2]))
com <- cbind(com, comtphh[, 2])
colnames(com)[dim(com)[2]] <- paste0("K_", max(comtphh[, 2]))
} else {
colnames(comtphh)[2] <- paste0("K_", max(comtphh[, 2]), "_semel")
if (nov >= 2) {
colnames(comtphh)[3] <- paste0("K_", max(comtphh[, 2]), "_bis")
}
if (nov == 3) {
colnames(comtphh)[4] <- paste0("K_", max(comtphh[, 2]), "_ter")
}
com <- cbind(com, comtphh[, -1])
}
tempnblev <- tempnblev + 1
}
if (nblev >= 2) {
nov <- dim(comtph)[2] - 1
if (nov == 1) {
colnames(comtph)[2] <- paste0("K_", max(comtph[, 2]))
com <- cbind(com, comtph[, 2])
colnames(com)[dim(com)[2]] <- paste0("K_", max(comtph[, 2]))
} else {
colnames(comtph)[2] <- paste0("K_", max(comtph[, 2]), "_semel")
if (nov >= 2) {
colnames(comtph)[3] <- paste0("K_", max(comtph[, 2]), "_bis")
}
if (nov == 3) {
colnames(comtph)[4] <- paste0("K_", max(comtph[, 2]), "_ter")
}
com <- cbind(com, comtph[, -1])
}
tempnblev <- tempnblev + 1
}
if (nblev >= 1) {
nov <- dim(comtp)[2] - 1
if (nov == 1) {
colnames(comtp)[2] <- paste0("K_", max(comtp[, 2]))
com <- cbind(com, comtp[, 2])
colnames(com)[dim(com)[2]] <- paste0("K_", max(comtp[, 2]))
} else {
colnames(comtp)[2] <- paste0("K_", max(comtp[, 2]), "_semel")
if (nov >= 2) {
colnames(comtp)[3] <- paste0("K_", max(comtp[, 2]), "_bis")
}
if (nov == 3) {
colnames(comtp)[4] <- paste0("K_", max(comtp[, 2]), "_ter")
}
com <- cbind(com, comtp[, -1])
}
tempnblev <- tempnblev + 1
}
colnames(com)[1] <- "ID"
com <- data.frame(com)
for (k in 2:dim(com)[2]) {
com[, k] <- as.numeric(as.character(com[, k]))
}
com[, 1] <- as.character(com[, 1])
com[,-1][com[,-1]==0]=NA
# Add attributes and return_node_type
if (isbip) {
attr(com, "node_type") <- rep("site", dim(com)[1])
attributes(com)$node_type[!is.na(match(com[, 1], idfeat))] <- "species"
if (return_node_type == "site") {
com <- com[attributes(com)$node_type == "site", ]
}
if (return_node_type == "species") {
com <- com[attributes(com)$node_type == "species", ]
}
}
# Set algorithm in outputs
outputs$algorithm$cmd <- cmd
outputs$algorithm$version <- "2.4"
outputs$algorithm$web <- "http://oslom.org/"
# Set clusters and cluster_info in output
outputs$clusters <- com
if(reassign == "no"){
outputs$cluster_info <- data.frame(
partition_name = names(outputs$clusters)[2:length(outputs$clusters),
drop = FALSE])
outputs$cluster_info$n_clust <- as.numeric(do.call(rbind,
strsplit(outputs$cluster_info$partition_name,
split="_"))[,2])
}else{
outputs$cluster_info <- data.frame(
partition_name = names(outputs$clusters)[2:length(outputs$clusters),
drop = FALSE
],
n_clust = apply(
outputs$clusters[, 2:length(outputs$clusters), drop = FALSE],
2, function(x) length(unique(x[!is.na(x)]))
)
)
}
if (nblev>1) {
outputs$inputs$hierarchical <- TRUE
if(reassign == "no"){
num1=outputs$cluster_info$n_clust
num2=num1[!duplicated(num1)]
outputs$cluster_info$hierarchical_level <- match(num1,num2)
}else{
outputs$cluster_info$hierarchical_level <- 1:nrow(outputs$cluster_info)
}
}
# Return outputs
class(outputs) <- append("bioregion.clusters", class(outputs))
return(outputs)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.