R/MCMCglmm_prediction.R

Defines functions predict2.MCMCglmm

## Get predicted values from a \code{MCMCglmm} object
##
## This is the main workhorse of the package.
## It is a \code{predict2} method for MCMCglmm objects.
## There are a few core arguments. The model \code{object}
## and design matrices, \code{X} (fixed effects) and \code{Z} (random effects).
## If \code{X} and \code{Z} are missing, it will attempt to fill
## them in from the model object (which optionally saves them).
## If \code{X} and \code{Z} are specified or \code{NULL}, they are not used.
## This is useful either for out of sample predictions
## or to use just the fixed effects. Note that these must be
## full design matrices, not data matrices.  For example, they
## must dummy code factors and include the intercept (if there
## was an intercept in the model).
##
## You can also use all posterior samples or just the mean.
## All is nice because it lets you construct highest posterior
## density (HPD) intervals around the predicted values, rather
## than just get an estimate. The mean is nice because if
## that is all you care about, it is much much faster.
## You can get either the linear predictor values or the response scale.
## However, response is currently only implemented for ordinal (probit) models.
## Theoretically it could be extended but the code is a pain.
##
# @param object A \code{MCMCglmm} model object to use for prediction.
## @param X The fixed effects design matrix. Can be the original or new data.
## @param Z The random effects design matrix. Can be the original or new data.
## @param use A character string. Use just the posterior \dQuote{mean} or
##   \dQuote{all} posterior samples (the default).
## @param type A cahracter string. Either \dQuote{lp} for the linear predictor
##   (the default) or \dQuote{response} for the predicted values on the response scale.
# @param \dots Not currently used.
## @return Either a matrix of the linear predictor if \code{type = "lp"} or a
##   list of class MCMCglmmPredictedProbs if \code{type = "response"}
## @method predict2 MCMCglmm
## @export
## @rdname predict2
## @seealso \code{\link{summary.MCMCglmmPredictedProbs}}, \code{\link{recycler}}
## @examples
##   \dontrun{
##     data(PlodiaPO)
##     PlodiaPO <- within(PlodiaPO, {
##       PO2 <- cut(PO, quantile(PO, c(0, .33, .66, 1)))
##     })
##
##     m <- MCMCglmm(PO2 ~ 1, random = ~ FSfamily,
##       family = "ordinal", data = PlodiaPO,
##       prior = list(
##         R = list(V = 1, fix = 1),
##         G = list(
##           G1 = list(V = 1, nu = .002)
##         )
##       ), verbose=FALSE, thin=1, pr=TRUE)
##
##     # predicted probabilities for each level of the outcome
##     # using all posterior samples
##     yhat <- predict2(m, use = "all", type = "response")
##     str(yhat) # view structure
##
##     # summary of predicted probabilities
##     sumyhat <- summary(yhat)
##     # first few summaries for level 1
##     head(sumyhat[[1]])
##
##     # first few summaries for level 2
##     head(sumyhat[[2]])
##
##     # first few summaries for level 3
##     head(sumyhat[[3]])
##
##     # combine
##     longsum <- do.call(rbind.data.frame, sumyhat)
##     # create a level indicator
##     longsum$Level <- factor(rep(1:3, each = nrow(sumyhat[[1]])))
##
##     # plot
##     boxplot(M ~ Level, data = longsum)
##   }
#' @importFrom stats pnorm plogis
#' @importFrom nlme fixef ranef
predict2.MCMCglmm <- function(object, X, Z, use = c("all", "mean"),
                              type = c("lp", "response"), ...) {

  use <- match.arg(use)
  type <- match.arg(type)

  if (!is.null(object$X) && missing(X)) {
    X <- object$X
  }

  if (!is.null(object$Z) && missing(Z)) {
    Z <- object$Z
  }

  if (missing(X)) X <- NULL
  if (missing(Z)) Z <- NULL

  Xb <- Zu <- 0L

  b <- fixef(object, use = use)
  u <- ranef(object, use = use)

  if (!is.null(X)) Xb <- X %*% b
  if (!is.null(Z)) Zu <- Z %*% u

  res <- t(as.matrix(Xb + Zu))

  dimnames(res) <- list(switch(use,
    all = paste0("Rep.", 1:nrow(res)), mean = NULL
  ), NULL)

  if (type == "response") {
    if (all(object$family %in% c("ordinal"))) {
      stopifnot(length(unique(object$error.term)) == 1)

      stddev <- sqrt(unique(object$error.term) + 1)

      # cut points
      CP <- object$CP
      if (use == "mean") CP <- colMeans(CP)

      CP <- as.list(as.data.frame(CP))
      CP <- c(0, lapply(CP, function(x) {
        do.call("cbind", rep(list(x), dim(res)[2L]))
      }))
      # difference between cuts and predicted plus lower and upper bounds
      for (i in seq_along(CP)) {
        CP[[i]] <- pnorm(CP[[i]] - res, 0, stddev)
      }

      CP <- c(0, CP, 1)

      q <- vector("list", length(CP) - 2)
      for (i in 2:(length(CP) - 1)) {
        q[[i - 1]] <- coda::mcmc(CP[[i + 1]] - CP[[i]])
      }
      q <- c(list(coda::mcmc(1 - Reduce(`+`, q[1:(i - 1)]))), q)
      class(q) <- c("list", "MCMCglmmPredictedProbs")
      res <- q
    } else if (all(object$family %in% c("categorical", "multinomial"))) {

      # stopifnot(length(unique(object$error.term)) == 1)
      k <- ((16 * sqrt(3)) / (15 * pi))^2 # this should be the scaling constant for logit
      stddev <- sqrt(object$error.term + k) # check that this is right error
      q <- plogis(res)
      class(q) <- c("MCMCglmmPredictedProbs")
      res <- q
    } else {
      stop("Function does not support response type for families beside ordinal")
    }
  } else if (type == "lp") {
    res <- coda::as.mcmc(res)
    class(res) <- c("mcmc", "MCMCglmmPredictedLP")
  }

  return(res)
}

## Calculate change in predicted probabilities
##
## \code{recycler} wraps many of the functions in \pkg{postMCMCglmm} to calculate
## the change in predicted probabilities for a twiddle change in the predictor,
## or for discrete predictors, it can use values so it is the change from 0 to 1
## (for example). The result is a MCMCglmmPredictedProbs
## (of course a difference but still) object, so it can be summarized using
## the \code{MCMCglmmPredictedProbs} \code{summary} method.
## This gives average marginal recycled predicted probabilities,
## as well as highest posterior density intervals.
##
## @param object A \code{MCMCglmm} model object to use for recycled predictions.
## @param index An integer indicating the column of the fixed effects design matrix, X,
##   to vary.  Defaults to 2L.
## @param twiddle A twiddle value for continuous variables. Needs to be small enough
##   for the scale of the predictor that a twiddle change is a reasonable approximation
##   of taking the first derivative at a point. That is, a very small change.
##   If missing, reverts to .01.
## @param values Specific values to use for the varying predictor. These are primarily
##   meant for discrete predictors rather than continuous ones.
## @param \dots Passed on to \code{predict2}
## @seealso \code{\link{summary.MCMCglmmPredictedProbs}}, \code{\link{predict2.MCMCglmm}}
## @return A list of class \code{MCMCglmmPredictedProbs} that are the differences
##   in predicted probabilities for a one unit change (calculated from the
##   twiddle value or between the discrete values supplied in \code{values}).
## @export
## @examples
## \dontrun{
##   ## Make me!
## }
## recycler <- function(object, index = 2L, twiddle, values, ...) {
##   L1 <- missing(twiddle)
##   L2 <- missing(values)
##   if (!L1 && !L2) stop("Please specify either a twiddle value or actual values, not both")
##   X1 <- X2 <- object$X

##   stopifnot(index %in% seq.int(ncol(X1)) || index %in% colnames(X1))

##   if (L1 && L2) {
##     twiddle <- .01
##   }
##   if (L2) {
##     X2[, index] <- X2[, index] + twiddle
##   } else {
##     stopifnot(length(values) == 2L)
##     X1[, index] <- values[1]
##     X2[, index] <- values[2]
##     twiddle <- diff(values)
##   }

##   p1 <- predict2(object, X = X1, use = "all", type = "response", ...)
##   p2 <- predict2(object, X = X2, use = "all", type = "response", ...)


##   pdelta <- lapply(seq_along(p2), function(i) {
##     (p2[[i]] - p1[[i]])/twiddle
##   })

##   class(pdelta) <- c("list", "MCMCglmmPredictedProbs")

##   return(pdelta)
## }

Try the broom.mixed package in your browser

Any scripts or data that you put into this service are public.

broom.mixed documentation built on Oct. 16, 2024, 1:06 a.m.