R/boxTidwell.R

Defines functions print.boxTidwell boxTidwell.default boxTidwell.formula boxTidwell

Documented in boxTidwell boxTidwell.default boxTidwell.formula print.boxTidwell

#-------------------------------------------------------------------------------
# Revision history:
# 2009-09-29 by J. Fox (renamed)
# 2010-03-11 by J. Fox: output changed
# 2010-03-13 by J. Fox: output row label fixed when just one X
# 2022-10-25 by J. Fox: use t-distribution for score tests, add omnibus score test,
#                       suggestions of Peter Dalgaard
#-------------------------------------------------------------------------------


# Box-Tidwell transformations (J. Fox)

boxTidwell <- function(y, ...){
	UseMethod("boxTidwell")
}

boxTidwell.formula <- function(formula, other.x=NULL, data=NULL, subset, na.action=getOption("na.action"), 
	verbose=FALSE, tol=.001, max.iter=25, ...) {
	m <- match.call(expand.dots = FALSE)
	if (is.matrix(eval(m$data, sys.frame(sys.parent())))) 
		m$data <- as.data.frame(data)
	m$formula <- if (is.null(other.x)) formula
		else as.formula(paste(formula[2], "~", formula[3], "+", other.x[2]))
	m$max.iter <- m$tol <- m$verbose <-  m$other.x <- m$... <- NULL
	m[[1]] <- as.name("model.frame")
	mf <- eval(m, sys.frame(sys.parent()))
	response <- attr(attr(mf, "terms"), "response")
	if (!response) stop(paste("no response variable in model"))
	X1 <- model.matrix(formula, data=mf)[,-1]
	X2 <- if (is.null(other.x)) NULL
		else model.matrix(other.x, data=mf)[,-1]
	y <- model.response(mf, "numeric")
	boxTidwell.default(y, X1, X2, max.iter=max.iter, tol=tol, verbose=verbose, ...)
}

boxTidwell.default <- function(y, x1, x2=NULL, max.iter=25, tol=.001, verbose=FALSE, ...) {
	x1 <- as.matrix(x1)
	if (any(x1 <= 0)) stop("the variables to be transformed must have only positive values")
	var.names <- if(is.null(colnames(x1))) seq(length.out=ncol(x1)) else colnames(x1)
	k.x1 <- length(var.names)
	x.log.x <- x1*log(x1)
	mod.1 <- lm(y ~ cbind(x1, x2), ...)
	mod.2 <- lm(y ~ cbind(x.log.x, x1, x2), ...)
	seb <- sqrt(diag(vcov(mod.2)))
	which.coefs <- 2:(1 + k.x1)
	F <- if (k.x1 > 1){
  	H <- cbind(0, diag(k.x1), matrix(0, k.x1, k.x1))
  	if (!is.null(x2)) H <- cbind(H, matrix(0, k.x1, ncol(x2)))
  	linearHypothesis(mod.2, H)
	} else {
	  NULL
	}
	t.vals <- ((coefficients(mod.2))/seb)[which.coefs]
	# initial <- 
	powers <- 1 + coefficients(mod.2)[which.coefs]/coefficients(mod.1)[which.coefs]
	pvalues <- 2*(pt(abs(t.vals), df=df.residual(mod.2), lower.tail=FALSE))
	iter <- 0
	last.powers <- 1
	while ((max(abs((powers - last.powers)/(powers + tol))) > tol) && (iter <= max.iter) ) {
		iter <- iter+1
		x1.p <- x1^matrix(powers, nrow=nrow(x1), ncol=ncol(x1), byrow=TRUE)
		x.log.x <- x1.p*log(x1.p)
		mod.1 <- lm.fit(cbind(1, x1.p, x2), y, ...)
		mod.2 <- lm.fit(cbind(1, x.log.x, x1.p, x2), y, ...)
		last.powers <- powers
		powers <- powers * (1 + coefficients(mod.2)[which.coefs]/coefficients(mod.1)[which.coefs])
		if (verbose) cat(" iter =", iter, "    powers =", powers, "\n")
	}
	if (iter > max.iter) warning("maximum iterations exceeded")
	result <- cbind(powers, t.vals, pvalues)
	colnames(result) <- c("MLE of lambda", "Score Statistic (t)", "Pr(>|t|)")
	rownames(result) <- if (nrow(result) == 1) "" else var.names
	result <- list(result=result, iterations=iter, F=F)
	class(result)<-"boxTidwell"
	result
}

print.boxTidwell <- function(x, digits=getOption("digits") - 2, ...){ 
	printCoefmat(x$result, digits=digits, has.Pvalue=TRUE)
	cat("\niterations = ", x$iterations,"\n")
	if (!is.null(x$F)){
  	cat("\nScore test for null hypothesis that all lambdas = 1:\n")
  	cat(paste0("F = ", format(x$F$F[2], digits=digits), ", df = ", x$F$Df[2], " and ", 
  	           x$F$Res.Df[2], ", Pr(>F) = ", format.pval(x$F$"Pr(>F)"[2], digits=digits - 1), '\n\n'))
	}
	return(invisible(x))
}

Try the car package in your browser

Any scripts or data that you put into this service are public.

car documentation built on Sept. 27, 2024, 9:06 a.m.