Nothing
#' @importFrom stats t.test
get_fitness_differences <- function(pnames, subsets, fitness, label) {
signs <- lapply(subsets, index2vec, vars = length(pnames))
signs <- do.call("rbind", signs)
colnames(signs) <- pnames
nzv <- apply(signs, 2, function(x) min(table(factor(x, levels = paste(0:1)))) > 1)
if(all(!nzv)) return(NULL)
signs <- signs[, nzv, drop = FALSE]
if(!is.matrix(fitness)) fitness <- as.matrix(fitness)
snr <- function(x, y) {
apply(y, 2,
function(outcome, ind)
t.test(outcome[ind == 1], outcome[ind == 0])$statistic,
ind = x)
}
melt(apply(signs, 2, snr, y = fitness))
}
#' @importFrom stats reshape
process_diffs <- function(x, pnames) {
is_null_res <- vapply(x, is.null, logical(1))
if (all(is_null_res)) {
stop("Not enough results to compute differences")
}
x <- x[!is_null_res]
x <- do.call("rbind", x)
mean_diffs <- ddply(x, c("Var1", "Var2"),
function(x) c(mean = mean(x$value, na.rm = TRUE)))
mean_diffs <- reshape(mean_diffs, direction = "wide",
v.names = "mean",
idvar = "Var2",
timevar = "Var1")
names(mean_diffs) <- gsub("mean\\.", "", names(mean_diffs))
names(mean_diffs)[1] <- "Variable"
included <- pnames %in% as.character(mean_diffs$Variable)
if(any(!included)) {
extras <- data.frame(Variable = pnames[!included])
for(i in 2:ncol(mean_diffs)) extras[, names(mean_diffs)[i]] <- NA_real_
mean_diffs <- rbind(mean_diffs, extras)
}
mean_diffs
}
same_args <- function(a, b) {
if(length(a) != length(b)) return(FALSE)
if(!isTRUE(all.equal(sort(a), sort(b)))) return(FALSE)
TRUE
}
getOper <- function(x) if(x) `%dopar%` else `%do%`
jack_sim <- function(a, b) {
if(is.matrix(a) && nrow(a) > 1) a <- a[1,,drop=FALSE]
if(is.matrix(a) && nrow(b) > 1) b <- b[1,,drop=FALSE]
sum(a ==1 & b ==1)/(sum(a == 1 & b == 0)+sum(a == 0 & b == 1)+sum(a ==1 & b ==1))*100
}
#' Convert indicies to a binary vector
#'
#' The function performs the opposite of \code{which} converting a set of
#' integers to a binary vector
#'
#'
#' @param x a vector of integers
#' @param vars the number of possible locations
#' @param sign a lgical; when true the data are encoded as -1/+1, and 0/1
#' otherwise
#' @return a numeric vector
#' @author Max Kuhn
#' @examples
#'
#' index2vec(x = 1:2, vars = 5)
#' index2vec(x = 1:2, vars = 5, sign = TRUE)
#'
#' @export index2vec
index2vec <- function(x, vars, sign = FALSE) {
bin <- rep(0, vars)
bin[x] <- 1
if(sign) bin <- ifelse(bin == 0, -1, 1)
bin
}
change_text <- function(old, new, p, show_diff = TRUE) {
a <- index2vec(new, p)
b <- index2vec(old, p)
size_diff <- length(new) - length(old)
if(show_diff) {
if(abs(size_diff) >= 0) {
num_text <- if(size_diff >= 0) paste0(length(old), "+", size_diff) else paste0(length(old), size_diff)
} else num_text <- paste(length(old))
} else {
old_len <- length(old)
new_len <- length(new)
num_text <- paste0(format(1:p)[old_len], "->", format(1:p)[new_len])
}
sim <- sprintf("%.1f", jack_sim(a, b))
num_text <- paste0(" (", num_text, ", ", sim, "%)")
num_text
}
#' @export
predictors.gafs <- function(x, ...) {
x$best_vars
}
#' @export
predictors.safs <- function(x, ...) {
x$best_vars
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.