Nothing
nosof94sustain <- function(params = c(9.01245, 1.252233, 16.924073, 0.092327))
{
## Set training
bigtr <- NULL
for(cond in 1:6) {
bigtr <- rbind(bigtr,
nosof94train(cond, blocks = 16, absval = 0,
blkstyle = "eights", missing = 'pad',
subjs = 100, seed = 7624))
}
## Set initial model state
init.state <- list(r = params[1], beta = params[2], d = params[3], eta = params[4],
tau = 0.0, lambda = c(1, 1, 1), dims = c(2, 2, 2), cluster = NA,
w = NA, colskip = 4)
## Run simulation
out <- slpSUSTAIN(init.state,bigtr, ties = "first")
out <- out$probs # Strip out final state info
## Combine output to training list
colnames(out) <- c('p1','p2')
out <- data.frame(cbind(bigtr,out))
## Calculate response accuracy
out$pc <- 0
out$pc[out$t1 == 1] <- out$p1[out$t1 == 1]
out$pc[out$t2 == 1] <- out$p2[out$t2 == 1]
## Convert to error rate
out$pc <- 1 - out$pc
## Archive raw output
## save(out, file = "rawout.RData")
## Aggregate across runs
out.ag <- aggregate(out$pc,list(out$blk,out$cond),mean)
colnames(out.ag) <- c('block','type','error')
return(out.ag[,c('type','block','error')])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.