Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dpi = 80
)
## ----setup--------------------------------------------------------------------
library(colocboost)
## ----load-summary-data--------------------------------------------------------
# Loading the Dataset
data("Sumstat_5traits")
names(Sumstat_5traits)
Sumstat_5traits$true_effect_variants
## ----summary-data-format------------------------------------------------------
class(Sumstat_5traits$sumstat[[1]])
head(Sumstat_5traits$sumstat[[1]])
## ----one-LD-------------------------------------------------------------------
# Extract genotype (X) and calculate LD matrix
data("Ind_5traits")
LD <- get_cormat(Ind_5traits$X[[1]])
# Run colocboost
res <- colocboost(sumstat = Sumstat_5traits$sumstat, LD = LD)
# Identified CoS
res$cos_details$cos$cos_index
# Plotting the results
colocboost_plot(res)
## ----matched-LD---------------------------------------------------------------
# Duplicate LD with matched summary statistics
LD_multiple <- lapply(1:length(Sumstat_5traits$sumstat), function(i) LD )
# Run colocboost
res <- colocboost(sumstat = Sumstat_5traits$sumstat, LD = LD_multiple)
# Identified CoS
res$cos_details$cos$cos_index
## ----superset-LD--------------------------------------------------------------
# Create sumstat with different number of variants - remove 100 variants in each sumstat
LD_superset <- LD
sumstat <- lapply(Sumstat_5traits$sumstat, function(x) x[-sample(1:nrow(x), 20), , drop = FALSE])
# Run colocboost
res <- colocboost(sumstat = sumstat, LD = LD_superset)
# Identified CoS
res$cos_details$cos$cos_index
## ----dictionary-mapped--------------------------------------------------------
# Create a simple dictionary for demonstration purposes
LD_arbitrary <- list(LD, LD) # traits 1 and 2 matched to the first genotype matrix; traits 3,4,5 matched to the third genotype matrix.
dict_sumstatLD = cbind(c(1:5), c(1,1,2,2,2))
# Display the dictionary
dict_sumstatLD
# Run colocboost
res <- colocboost(sumstat = Sumstat_5traits$sumstat, LD = LD_arbitrary, dict_sumstatLD = dict_sumstatLD)
# Identified CoS
res$cos_details$cos$cos_index
## ----hyprcoloc-compatible-----------------------------------------------------
# Loading the Dataset
data(Ind_5traits)
X <- Ind_5traits$X
Y <- Ind_5traits$Y
# Coverting to HyPrColoc compatible format
effect_est <- effect_se <- effect_n <- c()
for (i in 1:length(X)){
x <- X[[i]]
y <- Y[[i]]
effect_n[i] <- length(y)
output <- susieR::univariate_regression(X = x, y = y)
effect_est <- cbind(effect_est, output$beta)
effect_se <- cbind(effect_se, output$sebeta)
}
colnames(effect_est) <- colnames(effect_se) <- c("Y1", "Y2", "Y3", "Y4", "Y5")
rownames(effect_est) <- rownames(effect_se) <- colnames(X[[1]])
# Run colocboost
LD <- get_cormat(Ind_5traits$X[[1]])
res <- colocboost(effect_est = effect_est, effect_se = effect_se, effect_n = effect_n, LD = LD)
# Identified CoS
res$cos_details$cos$cos_index
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.