Nothing
## density
dtnorm <- function(x, mean = 0, sd = 1, left = -Inf, right = Inf, log = FALSE) {
input <- data.frame(x = as.numeric(x), mean = as.numeric(mean), sd = as.numeric(sd),
left = as.numeric(left), right = as.numeric(right))
rval <- with(input, .Call("cdtnorm", x, mean, sd, left, right, log))
if(is.matrix(x)) {
rval <- matrix(rval, ncol = ncol(x), nrow = nrow(x))
colnames(rval) <- colnames(x)
rownames(rval) <- rownames(x)
}
return(rval)
}
## distribution function
ptnorm <- function(q, mean = 0, sd = 1, left = -Inf, right = Inf,
lower.tail = TRUE, log.p = FALSE) {
input <- data.frame(q = as.numeric(q), mean = as.numeric(mean), sd = as.numeric(sd),
left = as.numeric(left), right = as.numeric(right))
rval <- with(input, .Call("cptnorm", q, mean, sd, left, right, lower.tail, log.p))
if(is.matrix(q)) {
rval <- matrix(rval, ncol = ncol(q), nrow = nrow(q))
colnames(rval) <- colnames(q)
rownames(rval) <- rownames(q)
}
return(rval)
}
## quantiles
qtnorm <- function(p, mean = 0, sd = 1, left = -Inf, right = Inf,
lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
lower <- if(lower.tail) left else right
upper <- if(lower.tail) right else left
p <- pnorm((lower-mean)/sd, lower.tail = lower.tail) * (1 - p) +
p*pnorm((upper - mean)/sd, lower.tail = lower.tail)
rval <- qnorm(p, lower.tail = lower.tail)*sd + mean
if(is.matrix(p)) {
rval <- matrix(rval, ncol = ncol(p), nrow = nrow(p))
colnames(rval) <- colnames(p)
rownames(rval) <- rownames(p)
}
return(rval)
}
## random numbers
rtnorm <- function(n, mean = 0, sd = 1, left = -Inf, right = Inf) {
qtnorm(runif(n), mean, sd, left = left, right = right)
}
## scores
stnorm <- function(x, mean = 0, sd = 1, left = -Inf, right = Inf,
which = c("mu", "sigma")) {
input <- data.frame(x = as.numeric(x), mean = as.numeric(mean), sd = as.numeric(sd),
left = as.numeric(left), right = as.numeric(right))
if(!is.character(which))
which <- c("mu", "sigma")[as.integer(which)]
which <- tolower(which)
score <- NULL
for(w in which) {
if(w == "mu")
score2 <- with(input, .Call("stnorm_mu", x, mean, sd, left, right))
if(w == "sigma")
score2 <- with(input, .Call("stnorm_sigma", x, mean, sd, left, right))
score <- cbind(score, score2)
}
if(is.null(dim(score)))
score <- matrix(score, ncol = 1)
colnames(score) <- paste("d", which, sep = "")
score
}
## Hessian
htnorm <- function(x, mean = 0, sd = 1, left = -Inf, right = Inf,
which = c("mu", "sigma")) {
input <- data.frame(x = as.numeric(x), mean = as.numeric(mean), sd = as.numeric(sd),
left = as.numeric(left), right = as.numeric(right))
if(!is.character(which))
which <- c("mu", "sigma", "mu.sigma", "sigma.mu")[as.integer(which)]
which <- tolower(which)
hess <- list()
for(w in which) {
if(w == "mu")
hess[[w]] <- with(input, .Call("htnorm_mu", x, mean, sd, left, right))
if(w == "sigma")
hess[[w]] <- with(input, .Call("htnorm_sigma", x, mean, sd, left, right))
if(w %in% c("mu.sigma", "sigma.mu"))
hess[[w]] <- with(input, .Call("htnorm_musigma", x, mean, sd, left, right))
}
hess <- do.call("cbind", hess)
colnames(hess) <- gsub("mu", "dmu", colnames(hess))
colnames(hess) <- gsub("sigma", "dsigma", colnames(hess))
colnames(hess)[colnames(hess) == "dmu"] <- "d2mu"
colnames(hess)[colnames(hess) == "dsigma"] <- "d2sigma"
hess
}
.erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
.erfc <- function(x) 2 * pnorm(x * sqrt(2), lower.tail = FALSE)
.erfcx <- function(x) 2 * pnorm(x * sqrt(2), lower.tail = FALSE) * exp(x^2)
.F1 <- function(x, y) {
delta <- exp(x^2 - y^2)
fx <- is.finite(x)
fy <- is.finite(y)
sx <- sign(x)
sy <- sign(y)
ifelse(fx & !fy, sy / .erfcx(sy * x),
ifelse(!fx & fy, sx / .erfcx(sx * y),
ifelse(abs(x) > y & y >= 0, (exp(-y^2) - exp(-x^2)) / (.erf(x) - .erf(y)),
ifelse(x < 0 & y < 0, (1 - delta) / (delta * .erfcx(-y) - .erfcx(-x)),
ifelse(x > 0 & y > 0, (1 - delta) / (.erfcx(x) - delta * .erfcx(y)),
(1 - delta) * exp(-x^2) / (.erf(y) - .erf(x)))))))
}
.F2 <- function(x, y) {
delta <- exp(x^2 - y^2)
fx <- is.finite(x)
fy <- is.finite(y)
sx <- sign(x)
sy <- sign(y)
ifelse(fx & !fy, sy * x / .erfcx(sy * x),
ifelse(!fx & fy, sx * y / .erfcx(sx * y),
ifelse(abs(x) > y & y >= 0, (y * exp(-y^2) - x * exp(-x^2)) / (.erf(x) - .erf(y)),
ifelse(x < 0 & y < 0, (x - y * delta) / (delta * .erfcx(-y) - .erfcx(-x)),
ifelse(x > 0 & y > 0, (x - y * delta) / (.erfcx(x) - delta * .erfcx(y)),
(x - y * delta) * exp(-x^2) / (.erf(y) - .erf(x)))))))
}
## Using the expressions in
## https://github.com/cossio/TruncatedNormal.jl/blob/fc904152f2da11a257e3ccdd3e49ef118b81d437/notes/normal.pdf
## to avoid catastrophic cancellation
etnorm <- function (mean = 0, sd = 1, left = -Inf, right = Inf) {
rmm <- (right - mean) / sd / sqrt(2)
lmm <- (left - mean) / sd / sqrt(2)
ifelse(rmm == Inf & lmm == -Inf, mean,
mean + sqrt(2 / pi) * .F1(lmm, rmm) * sd)
}
sdtnorm <- function (mean = 0, sd = 1, left = -Inf, right = Inf) {
rmm <- (right - mean) / sd / sqrt(2)
lmm <- (left - mean) / sd / sqrt(2)
ifelse(rmm == Inf & lmm == -Inf, sd,
sd * sqrt(1 + 2 / sqrt(pi) * .F2(lmm, rmm) - 2 / pi * (.F1(lmm, rmm))^2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.