R/dose_response.R

Defines functions dose_response

Documented in dose_response

#' Calculate a dose response curve
#'
#' Returns a `data.frame` with points on the dose response curve for the given
#' effect scenario.
#'
#' Derives a dose response curve from a [scenario]. The result will
#' cover the requested range of effect levels. The tested multiplication factors
#' can be chosen by different strategies, i.e. a `vanilla` approach using a
#' fixed set of factors, or `decadic` and `exponential` approaches
#' employing logarithmic and exponential factor scaling, respectively.
#'
#' @param scenario `EffectScenario` used for calculation
#' @param range numeric vector specifying the required range of effect levels in percent (%), defaults to `c(1,99)`
#' @param n minimum number of points on the dose response curve
#' @param strategy controls how multiplication factors are chosen, `vanilla` uses a fixed
#' set of multiplication factors, `decadic` and `exponential` have varying step lengths
#' if this is feasible depends on the environment setup as defined by the `future` package
#' @param verbose  logical, set to `TRUE` for additional status messages
#' @param ... additional arguments passed on to [effect()]
#'
#' @return `data.frame` with two columns, i.e. `factor` and `effect`
#' @export
#' @global endpoint
#'
#' @examples
#' # basic dose response curve
#' minnow_sd %>% dose_response()
#'
#' # modify the minimum number of points on the curve
#' minnow_sd %>% dose_response(n=10)
#'
#' # select a subset of the effect range
#' minnow_sd %>% dose_response(range=c(10,20))
#'
#' # use an alternative strategy for the selection of multiplication factors
#' minnow_sd %>% dose_response(strategy="decadic")
#'
#' # provide additional output how multiplication factors were selected
#' minnow_sd %>% dose_response(verbose=TRUE)
dose_response <- function(scenario, range=c(1,99), n=20, strategy=c("exponential","decadic","vanilla"),
                          verbose=FALSE, ...)
{
  if(length(scenario)>1|is.data.frame(scenario))
    stop("multiple scenarios supplied")
  if(is.vector(scenario))
    scenario <- scenario[[1]]

  strategy <- match.arg(strategy)
  if(length(range)==0) stop("effect range required")
  else if(length(unique(range))==1) {
    min.effect <- max(1,range[1]-1)
    max.effect <- min(99,range[1]+1)
  } else {
    min.effect <- max(min(range)-1,1)
    max.effect <- min(max(range)+1,99)
  }

  # sequential processing requested?
  if(getOption("cvasi.pll.off", FALSE))
    map2 <- purrr::map2_dfr
  else
    map2 <- furrr::future_map2_dfr
  # check if controls are present
  if(!has_controls(scenario))
    scenario <- cache_controls(scenario,...)

  epx.min <- epx(scenario, level=min.effect, ...) %>%
    dplyr::rename_with(~gsub("\\.EP\\d+","",.x))
  epx.max <- epx(scenario, level=max.effect, ...) %>%
    dplyr::rename_with(~gsub("\\.EP\\d+","",.x))
  drc <- data.frame(endpoint=character(),mf=numeric(),effect=numeric())

  for(ep in scenario@endpoints)
  {
    f.min <- epx.min[[1,ep]]
    f.max <- epx.max[[1,ep]]

    # Decadic strategy has a constant step length in decimal multiples of powers of ten
    if(strategy=="decadic")
    {
      dec.step <- 2
      do.repeat <- T
      while(do.repeat)
      {
        dec.step <- dec.step/2
        if(verbose) message(paste("  decadic step length",dec.step))
        if(dec.step<1e-30) stop("refinement failed, step length too small")
        do.repeat <- F
        # list of factors to calculate effects for
        mf <- c()
        for(i in seq(log10(f.min),3))
          mf <- c(mf, seq(1,9,dec.step)*10^i)
        # remove factors larger than upper boundary
        if(f.max > 0)
          mf <- mf[mf<=f.max]
        # more factors requested than present?
        do.repeat <- length(mf)<n
      }
    }
    # Exponential strategy has a constant step width in the powers of ten
    else if(strategy=="exponential")
    {
      pow.step <- 0.2
      do.repeat <- T
      while(do.repeat)
      {
        pow.step <- pow.step/2
        if(verbose) message(paste("  exponential step length",pow.step))
        if(pow.step<1e-30) stop("refinement failed, step length too small")
        do.repeat <- F
        # list of factors to calculate effects for
        mf <- exp(log(10)*seq(log(f.min)/log(10),10,pow.step))
        # remove factors out of target range
        mf <- mf[mf>=f.min]
        if(f.max > 0)
          mf <- mf[mf<=f.max]
        # more factors requested than present?
        do.repeat <- length(mf)<n
      }
    }
    # Vanilla approach as implemented in an older risk assessment
    else if(strategy=="vanilla") {
      mf <- c(1:99,	1:9 *100, 2:10*500, 6:10 *1000)
      # remove factors out of target range
      mf <- mf[mf>=f.min]
      if(f.max > 0)
        mf <- mf[mf<=f.max]
      if(length(mf)<n) stop("refinement not supported for vanilla strategy")
    }

    if(verbose) message(paste("  calculating",length(mf),"new effect levels"))
    # calculate effects
    efx <- map2(rep(c(scenario),length(mf)),mf,effect,ep_only=TRUE,...)
    dplyr::bind_rows(drc, tibble::tibble(mf=mf, effect=efx[[ep]], endpoint=ep)) -> drc
  }
  drc %>% dplyr::arrange(endpoint,mf)
}

Try the cvasi package in your browser

Any scripts or data that you put into this service are public.

cvasi documentation built on Sept. 11, 2024, 5:21 p.m.