Nothing
#' Count the observations in each group
#'
#' @description
#' `count()` lets you quickly count the unique values of one or more variables:
#' `df %>% count(a, b)` is roughly equivalent to
#' `df %>% group_by(a, b) %>% summarise(n = n())`.
#' `count()` is paired with `tally()`, a lower-level helper that is equivalent
#' to `df %>% summarise(n = n())`. Supply `wt` to perform weighted counts,
#' switching the summary from `n = n()` to `n = sum(wt)`.
#'
#' `add_count()` and `add_tally()` are equivalents to `count()` and `tally()`
#' but use `mutate()` instead of `summarise()` so that they add a new column
#' with group-wise counts.
#'
#' @param x A data frame, data frame extension (e.g. a tibble), or a
#' lazy data frame (e.g. from dbplyr or dtplyr).
#' @param ... <[`data-masking`][rlang::args_data_masking]> Variables to group
#' by.
#' @param wt <[`data-masking`][rlang::args_data_masking]> Frequency weights.
#' Can be `NULL` or a variable:
#'
#' * If `NULL` (the default), counts the number of rows in each group.
#' * If a variable, computes `sum(wt)` for each group.
#' @param sort If `TRUE`, will show the largest groups at the top.
#' @param name The name of the new column in the output.
#'
#' If omitted, it will default to `n`. If there's already a column called `n`,
#' it will use `nn`. If there's a column called `n` and `nn`, it'll use
#' `nnn`, and so on, adding `n`s until it gets a new name.
#' @param .drop Handling of factor levels that don't appear in the data, passed
#' on to [group_by()].
#'
#' For `count()`: if `FALSE` will include counts for empty groups (i.e. for
#' levels of factors that don't exist in the data).
#'
#' `r lifecycle::badge("deprecated")` For `add_count()`: deprecated since it
#' can't actually affect the output.
#' @return
#' An object of the same type as `.data`. `count()` and `add_count()`
#' group transiently, so the output has the same groups as the input.
#' @export
#' @examples
#' # count() is a convenient way to get a sense of the distribution of
#' # values in a dataset
#' starwars %>% count(species)
#' starwars %>% count(species, sort = TRUE)
#' starwars %>% count(sex, gender, sort = TRUE)
#' starwars %>% count(birth_decade = round(birth_year, -1))
#'
#' # use the `wt` argument to perform a weighted count. This is useful
#' # when the data has already been aggregated once
#' df <- tribble(
#' ~name, ~gender, ~runs,
#' "Max", "male", 10,
#' "Sandra", "female", 1,
#' "Susan", "female", 4
#' )
#' # counts rows:
#' df %>% count(gender)
#' # counts runs:
#' df %>% count(gender, wt = runs)
#'
#' # When factors are involved, `.drop = FALSE` can be used to retain factor
#' # levels that don't appear in the data
#' df2 <- tibble(
#' id = 1:5,
#' type = factor(c("a", "c", "a", NA, "a"), levels = c("a", "b", "c"))
#' )
#' df2 %>% count(type)
#' df2 %>% count(type, .drop = FALSE)
#'
#' # Or, using `group_by()`:
#' df2 %>% group_by(type, .drop = FALSE) %>% count()
#'
#' # tally() is a lower-level function that assumes you've done the grouping
#' starwars %>% tally()
#' starwars %>% group_by(species) %>% tally()
#'
#' # both count() and tally() have add_ variants that work like
#' # mutate() instead of summarise
#' df %>% add_count(gender, wt = runs)
#' df %>% add_tally(wt = runs)
count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) {
UseMethod("count")
}
#' @export
#' @rdname count
count.data.frame <- function(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = group_by_drop_default(x)) {
dplyr_local_error_call()
if (!missing(...)) {
out <- group_by(x, ..., .add = TRUE, .drop = .drop)
} else {
out <- x
}
out <- tally(out, wt = !!enquo(wt), sort = sort, name = name)
# Ensure grouping is transient
out <- dplyr_reconstruct(out, x)
out
}
#' @export
#' @rdname count
tally <- function(x, wt = NULL, sort = FALSE, name = NULL) {
UseMethod("tally")
}
#' @export
tally.data.frame <- function(x, wt = NULL, sort = FALSE, name = NULL) {
name <- check_n_name(name, group_vars(x))
dplyr_local_error_call()
n <- tally_n(x, {{ wt }})
local_options(dplyr.summarise.inform = FALSE)
out <- summarise(x, !!name := !!n)
if (sort) {
arrange(out, desc(!!sym(name)))
} else {
out
}
}
#' @export
#' @rdname count
add_count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated()) {
UseMethod("add_count")
}
#' @export
add_count.default <- function(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated()) {
add_count_impl(
x,
...,
wt = {{ wt }},
sort = sort,
name = name,
.drop = .drop
)
}
#' @export
add_count.data.frame <- function(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated()) {
out <- add_count_impl(
x,
...,
wt = {{ wt }},
sort = sort,
name = name,
.drop = .drop
)
dplyr_reconstruct(out, x)
}
add_count_impl <- function(x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = deprecated(),
error_call = caller_env()) {
if (!is_missing(.drop)) {
lifecycle::deprecate_warn("1.0.0", "add_count(.drop = )", always = TRUE)
}
dplyr_local_error_call(error_call)
if (!missing(...)) {
out <- group_by(x, ..., .add = TRUE)
} else {
out <- x
}
add_tally(out, wt = {{ wt }}, sort = sort, name = name)
}
#' @rdname count
#' @export
add_tally <- function(x, wt = NULL, sort = FALSE, name = NULL) {
name <- check_n_name(name, tbl_vars(x))
dplyr_local_error_call()
n <- tally_n(x, {{ wt }})
out <- mutate(x, !!name := !!n)
if (sort) {
arrange(out, desc(!!sym(name)))
} else {
out
}
}
# Helpers -----------------------------------------------------------------
tally_n <- function(x, wt) {
wt <- enquo(wt)
if (is_call(quo_get_expr(wt), "n", n = 0)) {
# Provided only by dplyr 1.0.0. See #5349 for discussion.
warn(c(
"`wt = n()` is deprecated",
i = "You can now omit the `wt` argument"
))
wt <- quo(NULL)
}
if (quo_is_null(wt)) {
expr(n())
} else {
expr(sum(!!wt, na.rm = TRUE))
}
}
check_n_name <- function(name,
vars,
arg = caller_arg(name),
call = caller_env()) {
if (is.null(name)) {
name <- n_name(vars)
if (name != "n") {
inform(c(
glue("Storing counts in `{name}`, as `n` already present in input"),
i = "Use `name = \"new_name\"` to pick a new name."
))
}
} else {
check_string(name, arg = arg, call = call)
}
name
}
n_name <- function(x) {
name <- "n"
while (name %in% x) {
name <- paste0("n", name)
}
name
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.