Nothing
"drmEMstandard" <-
function(dose, resp, multCurves, doseScaling = 1)
{
## Defining a helper function for calculating the variance-covariance matrix
# vcFct <- function(beta0, beta, sigma2, len0)
# {
# vc <- (sigma2 / len0) * (beta %o% beta) / (beta0^4)
# diag(vc) <- diag(vc) + sigma2 / (beta0^2)
#
# return(vc)
# }
vcFct <- function(beta0, beta, len0)
{
vc <- (1 / len0) * (beta %o% beta) / (beta0^4)
diag(vc) <- diag(vc) + (1 / (beta0^2))
return(vc)
}
zeroDose <- dose < 1e-15 # hardcoded tolerance of 1e-15
len0 <- sum(zeroDose)
vcFct2 <- function(beta0, betaVec)
{
# len0 <- weightVec[1] # in case len0 is a vector
vc <- (1 / len0) * (betaVec %o% betaVec) / (beta0^4)
diag(vc) <- diag(vc) + (1 / (beta0^2))
# zeroDose <- dose < doseTol
# print(vc[!zeroDose, zeroDose])
# print((1 / len0) * (-betaVec / (beta0^3)))
# print(vc[!zeroDose, zeroDose] + (1 / len0) * (-betaVec[!zeroDose] / (beta0^3)))
vc[!zeroDose, zeroDose] <- vc[!zeroDose, zeroDose] + (1 / len0) * (-betaVec[!zeroDose] / (beta0^3))
vc[zeroDose, !zeroDose] <- vc[zeroDose, !zeroDose] + (1 / len0) * (-betaVec[!zeroDose] / (beta0^3))
# print(vc[zeroDose, zeroDose])
# print(diag(vc[zeroDose, zeroDose]) + (1 / (len0 * beta0^2)) - (1 / (beta0^2)))
diag(vc[zeroDose, zeroDose]) <- diag(vc[zeroDose, zeroDose]) + (1 / (len0 * beta0^2)) - (1 / (beta0^2))
return(vc)
}
## Defining the objective function
opfct <- function(c) # dose, resp and weights are fixed
{
print(c)
f0 <- multCurves(0, c)[1]
print(f0)
fVec <- multCurves(dose / doseScaling, c)
print(fVec)
# vcMat <- vcFct(f0, fVec, weightVec)
vcMat <- vcFct2(f0, fVec)
print(solve(vcMat)[1:6, 1:6])
sum( (resp - fVec) %*% solve(vcMat) %*% (resp - fVec))
}
## Defining self starter function
ssfct <- NULL
## Defining the log likelihood function
llfct <- function(object)
{
# total <- (object$"data")[iv, 5]
# success <- total*(object$"data")[iv, 2]
# c( sum(log(choose(total, success))) - object$"fit"$"ofvalue", object$"sumList"$"df.residual" )
c(
-object$"fit"$value + sum(log(gamma(resp+1))),
object$"sumList"$"df.residual"
) # adding scale constant
}
## Defining functions returning the residual variance, the variance-covariance matrix, and the parameter estimates
# rvfct <- function(object)
# {
# object$"fit"$"value" / df.residual(object) # object$"sumList"$"df.residual"
# }
#
# vcovfct <- function(object)
# {
# solve(object$fit$hessian)
# }
#
# copied from drmEMls.R
rvfct <- function(object)
{
object$"fit"$"value" / df.residual(object)
}
vcovfct <- function(object)
{
scaledH <- (object$"fit"$"hessian") / (2 * rvfct(object))
invMat <- try(solve(scaledH), silent = TRUE)
if (inherits(invMat, "try-error"))
{
## More stable than 'solve' (suggested by Nicholas Lewin-Koh - 2007-02-12)
ch <- try(chol(scaledH))
if(inherits(ch, "try-error"))
{
ch <- try(chol(0.99 * object$fit$hessian + 0.01 * diag(dim(object$fit$hessian)[1])))
}
## Try regularizing if the varcov is unstable
if(!inherits(ch, "try-error")) return(chol2inv(ch))
} else {
return(invMat)
}
}
parmfct <- function(fit, fixed = TRUE)
{
fit$par
}
## Returning list of functions
return(list(llfct = llfct, opfct = opfct, ssfct = ssfct, rvfct = rvfct, vcovfct = vcovfct,
parmfct = parmfct))
}
"drmLOFstandard" <- function()
{
return(list(anovaTest = NULL, gofTest = NULL))
}
if (FALSE)
{
covFct <- function(sigma0, sigma, myVec, dose)
{
zeroDose <- dose < 1e-15 # hardcoded tolerance of 1e-15
len0 <- sum(zeroDose)
my0 <- (myVec[zeroDose])[1]
n0 <- sum(zeroDose)
lenMy <- length(myVec)
derMat <- matrix(0, lenMy, lenMy+1)
diag(derMat) <- 1 / my0
derMat[, lenMy+1] <- -myVec / (my0^2)
lenY <- lenMy + 1
origVCmat <- matrix(0, lenY, lenY)
sigma0mean <- sigma0^2/n0
origVCmat[zeroDose, zeroDose] <- sigma0mean
diag(origVCmat)[!zeroDose] <- sigma^2
diag(origVCmat)[zeroDose] <- sigma0^2
origVCmat[lenY, lenY] <- sigma0mean
list(my0, n0, derMat, origVCmat, derMat %*% origVCmat %*% t(derMat))
}
resList<-covFct(0.52, 0.52, fitted(ryegrass.m1)[1:10], ryegrass$conc[1:10])
resList[[5]] / (outVec %o% outVec)
varOptim1 <- function(varpar)
{
resList <- covFct(varpar[1], varpar[2], fitted(ryegrass.m1), ryegrass$conc)[[5]]
resVec <- residuals(ryegrass.m1)
# resVec <- fitted(ryegrass.m1) + rnorm(24, 0, c(rep(3,6), rep(1, 18))
resVec%*%solve(resList)%*%resVec + log(abs(det(resList)))
}
optim(c(1, 0.1), varOptim1)
varOptim1b <- function(par, const = 1)
{
fittedVec <- par[2]+(1-par[2])/(1+(ryegrass$conc/par[3])^par[1])
resList <- covFct(1, par[4], fittedVec, ryegrass$conc)[[5]]
resVec <- (ryegrass$rootl / 7.75) - fittedVec
resVec%*%solve(resList)%*%resVec + const * log(abs(det(resList)))
}
rg.optim <- optim(c(2,0.05,3,0.5), varOptim1b, hessian = TRUE)
sqrt(diag(solve(rg.optim$hessian)))
sqrt(varOptim1b(rg.optim$par, 0) / 20)
## S.alba
varOptim1b2 <- function(par, const = 1)
{
fittedVec <- par[2]+(1-par[2])/(1+(S.alba$Dose[1:32]/par[3])^par[1])
resList <- covFct(1, par[4], fittedVec, S.alba$Dose[1:32])[[5]]
resVec <- (S.alba$DryMatter[1:32] / 7.75) - fittedVec
resVec%*%solve(resList)%*%resVec + const * log(abs(det(resList)))
}
rg.optim2 <- optim(c(2,0.05,3,0.5), varOptim1b2, hessian = TRUE)
rg.optim2$par
sqrt(diag(solve(rg.optim2$hessian)))
sqrt(varOptim1b2(rg.optim2$par, 0) / 28)
sa.drm1 <- drm(DryMatter~Dose, data=S.alba[1:32,], fct=LL.4())
summary(sa.drm1)
sa.drm2 <- drm(DryMatter/mean(S.alba$DryMatter[1:8])~Dose, data=S.alba[1:32,], fct=LL.4(fixed=c(NA,NA,1,NA)))
summary(sa.drm2)
sa.drm3 <- drm(DryMatter/mean(S.alba$DryMatter[1:8])~Dose, data=S.alba[1:32,], fct=LL.4(fixed=c(NA,NA,NA,NA)))
summary(sa.drm3)
#yVec <- fitted(ryegrass.m1) + rnorm(24, 0, c(rep(3,6), rep(1, 18)))
yVec <- fitted(ryegrass.m1) + rnorm(24, 0, c(rep(10,6), rep(1, 18)))
xVec <- ryegrass$conc
varOptim1c <- function(par, const = 1)
{
fittedVec <- par[2]+(1-par[2])/(1+(xVec/par[3])^par[1])
resList <- covFct(1, par[4], fittedVec, xVec)[[5]]
resVec <- (yVec / mean(yVec[1:4])) - fittedVec
resVec%*%solve(resList)%*%resVec + const * log(det(resList))
}
ratioVec <- rep(NA, 100)
sigmaVec <- rep(NA, 100)
ec50Vec <- rep(NA, 100)
seVec1 <- rep(NA, 100)
seVec2 <- rep(NA, 100)
xVec <- rep(ryegrass$conc, rep(3, 24))
xVec <- xVec[-c(1:14)]
for (i in 1:100)
{
yVec <- rep(fitted(ryegrass.m1), rep(3, 24)) + rnorm(72, 0, c(rep(3,18), rep(1, 54)))
yVec <- yVec[-c(1:14)]
# varOptim1c <- function(par, const = 1)
# {
# fittedVec <- par[2]+(1-par[2])/(1+(xVec/par[3])^par[1])
# resList <- covFct(1, par[4], fittedVec, xVec)[[5]]
# resVec <- (yVec / mean(yVec[1:6])) - fittedVec
# resVec%*%solve(resList)%*%resVec + const * log(det(resList))
# }
# seVec1[i] <- coef(summary(drm(yVec/mean(yVec[1:4])~xVec, fct=LL.4(fixed=c(NA,NA,NA,NA)))))[4,2]
seVec1[i] <- coef(summary(drm(yVec/mean(yVec[1:4])~xVec, fct=LL.4(fixed=c(NA,NA,1,NA)))))[3,2]
optimRes <- optim(c(1.7,0.01,2.5,0.1), varOptim1c, hessian=TRUE)
seVec2[i] <- sqrt(diag(solve(optimRes$hessian)))[3]
parem <- optimRes$par
ratioVec[i] <- parem[4]
ec50Vec[i] <- parem[3]
sigmaVec[i] <- sqrt(varOptim1c(parem, 0)/68)
}
cbind(seVec1, seVec2)
ratioVec
sigmaVec
hist(ratioVec)
hist(sigmaVec)
varOptim2 <- function(varpar)
{
resList<-covFct(varpar[1], varpar[2], fitted(ryegrass.m1), ryegrass$conc)[[5]]
resVec <-residuals(ryegrass.m1)
resVec%*%solve(resList)%*%resVec+log(abs(det(resList)))
}
#resVec2 <- ryegrass$rootl - (fitted(ryegrass.m1) + rnorm(24, 0, c(rep(3,6), rep(1, 18))))
varOptim3 <- function(varpar, const=1)
{
resList<-covFct(1, varpar[1], fitted(ryegrass.m1), ryegrass$conc)[[5]]
resVec <- residuals(ryegrass.m1)
# resVec <- resVec2
resVec%*%solve(resList)%*%resVec + const * log(abs(det(resList)))
}
optimize(varOptim3, lower=0, upper=100)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.