Nothing
# Add units to create_*() functions
#
# @param L0_flat (tbl_df, tbl, data.frame) The fully joined source L0 dataset, in "flat" format (see details).
# @param res (tbl_df, tbl, data.frame) Intermediary result in create_*()
# @param unit (character) Unit column input to create_*()
#
# @return (tbl_df, tbl, data.frame) \code{res} with an added unit column for the variables listed under variable_name
#
add_units <- function(L0_flat, res, unit) {
if (!is.null(unit)) {
unit_map <- L0_flat %>% dplyr::select(dplyr::all_of(unit)) %>% unique() # Unique unit values
unit_map <- as.data.frame(lapply(unit_map, stats::na.omit)) # Remove NA
unit_map <- data.frame(variable_name = colnames(unit_map),
unit = as.character(unit_map[1, ]), # Should only be one
stringsAsFactors = FALSE)
unit_map$variable_name <- stringr::str_remove_all(unit_map$variable_name,
"unit_")
res <- dplyr::left_join(res, unit_map, by = "variable_name")
} else if (is.null(unit)) {
res$unit <- NA_character_
}
return(res)
}
# Get provenance metadata
#
# @description
# Add Provenance Metadata from Level-1 metadata in PASTA to an XML
# document containing a single methods element in the request message
# body.
#
# @param package.id
# (character) Package identifier composed of scope, identifier, and
# revision (e.g. 'edi.101.1').
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# ("xml_document" "xml_node") EML metadata.
#
#
api_get_provenance_metadata <- function(package.id, environment = 'production'){
message(paste('Retrieving provenance metadata for ', package.id))
ping_edi()
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/provenance/eml/',
stringr::str_replace_all(package.id, '\\.', '/')
)
)
output <- httr::content(
r,
as = 'parsed',
encoding = 'UTF-8'
)
output
}
# List data package revisions
#
# @description
# List Data Package Revisions operation, specifying the scope and
# identifier values to match in the URI. The request may be filtered by
# applying the modifiers “oldest” or “newest” to the “filter” query
# parameter.
#
# @param scope
# (character) Data package scope (e.g. 'edi', 'knb-lter-bnz').
# @param identifier
# (character) Data package identifier (e.g. '100', '275').
# @param filter
# (character) Filter to data packages, can be 'oldest' or 'newest'.
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# (character) Vector of revisions, if more than one exists, otherwise a
# single revision number.
#
api_list_data_package_revisions <- function(scope, identifier, filter = NULL, environment = 'production'){
message(paste('Retrieving data package revisions for',
paste(scope, '.', identifier)))
ping_edi()
if (is.null(filter)){
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/eml/',
scope,
'/',
identifier
)
)
r <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
output <- utils::read.csv(
text = c(
'revision',
r
),
as.is = T
)
output <- as.character(output$revision)
} else if (filter == 'newest'){
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/eml/',
scope,
'/',
identifier,
'?filter=newest'
)
)
output <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
} else if (filter == 'oldest'){
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/eml/',
scope,
'/',
identifier,
'?filter=oldest'
)
)
output <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
}
output
}
# Read data entity name
#
# @description
# Read Data Entity Name operation, specifying the scope, identifier,
# revision, and entity identifier of the data entity whose name is
# to be read in the URI.
#
# @param package.id
# (character) Package identifier composed of scope, identifier, and
# revision (e.g. 'edi.101.1').
# @param identifier
# (character) Data entity identifier (e.g.
# 5c224a0e74547b14006272064dc869b1)
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# (character) Data entity name
#
api_read_data_entity_name <- function(package.id, identifier, environment = 'production'){
message(paste('Retrieving name of', package.id, identifier))
ping_edi()
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/name/eml/',
stringr::str_replace_all(package.id, '\\.', '/'),
'/',
identifier
)
)
r <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
output <- as.character(
utils::read.csv(
text = c(
'identifier',
r
),
as.is = T
)$identifier
)
output
}
# Read data package
#
# @description
# Read Data Package operation, specifying the scope, identifier, and
# revision of the data package to be read in the URI, returning a resource
# map with reference URLs to each of the metadata, data, and quality
# report resources that comprise the data package.
#
# @param package.id
# (character) Package identifier composed of scope, identifier, and
# revision (e.g. 'edi.101.1').
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# (character) Reference URLs.
#
api_read_data_package <- function(package.id, environment = 'production'){
message(paste('Retrieving resource map for', package.id))
ping_edi()
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/eml/',
stringr::str_replace_all(package.id, '\\.', '/')
)
)
r <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
output <- as.character(
utils::read.csv(
text = c(
'identifier',
r
),
as.is = T
)$identifier
)
output
}
# Read data package DOI
#
# @description
# Read Data Package DOI operation, specifying the scope, identifier,
# and revision of the data package DOI to be read in the URI.
#
# @param package.id
# (character) Package identifier composed of scope, identifier, and
# revision (e.g. 'edi.101.1').
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# (character) The canonical Digital Object Identifier.
#
api_read_data_package_doi <- function(package.id, environment = 'production'){
message(paste('Retrieving DOI for', package.id))
ping_edi()
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/doi/eml/',
stringr::str_replace_all(package.id, '\\.', '/')
)
)
output <- httr::content(
r,
as = 'text',
encoding = 'UTF-8'
)
output
}
# Read metadata
#
# @description
# Read Metadata (EML) operation, specifying the scope, identifier, and
# revision of the EML document to be read in the URI.
#
# @param package.id
# (character) Package identifier composed of scope, identifier, and
# revision (e.g. 'edi.101.1').
# @param environment
# (character) Data repository environment to create the package in.
# Can be: 'development', 'staging', 'production'.
#
# @return
# ('xml_document' 'xml_node') EML metadata.
#
#
api_read_metadata <- function(package.id, environment = 'production'){
message(paste('Retrieving EML for data package', package.id))
ping_edi()
r <- httr::GET(
url = paste0(
url_env(environment),
'.lternet.edu/package/metadata/eml/',
stringr::str_replace_all(package.id, '\\.', '/')
)
)
eml <- httr::content(
r,
as = 'parsed',
encoding = 'UTF-8'
)
eml
}
# Convert \code{character(0)} to \code{""}
#
# @param txt (character) Character string
#
# @return (character) Return \code{txt} if not empty else ""
#
cnvmt <- function(txt) {
if (length(txt) == 0) {
return("")
} else {
return(txt)
}
}
# Coerce table classes to ecocomDP specifications
#
# @param tbl (data.frame) Table to coerce
# @param name (character) Table name
# @param cls (character) Class of L0_flat input.
#
# @return \code{tbl} with column classes coerced to ecocomDP model specifications and of the input type specified by \code{cls}.
#
# @details Datetime columns are not coerced. These are unchanged from the input class.
#
coerce_table_classes <- function(tbl, name, cls) {
crit <- read_criteria() %>%
dplyr::filter(table == name) %>%
dplyr::select(column, class) %>%
stats::na.omit()
for (col in colnames(tbl)) {
colclass <- crit$class[crit$column == col]
if (colclass == "character") {
tbl[[col]] <- as.character(tbl[[col]])
} else if (colclass == "numeric") {
tbl[[col]] <- as.numeric(tbl[[col]])
}
}
if (all(c("tbl_df", "tbl", "data.frame") %in% cls)) {
tbl <- tidyr::as_tibble(tbl)
} else {
tbl <- as.data.frame(tbl)
}
return(tbl)
}
#' Detect the type of object input to the \code{data} parameter
#'
#' @description The \code{data} parameter, used by a few functions in the ecocomDP package, can accept different object types. \code{detect_data_type()} identifies the object type, which the calling function typically uses in some flow control logic.
#'
#' @param data (list or tbl_df, tbl, data.frame) The dataset object returned by \code{read_data()}, a named list of tables containing the observation table, or a flat table containing columns of the observation table.
#'
#' @return (character) The type of \code{data}, which is one of:
#' \itemize{
#' \item "dataset": The default return of \code{read_data()}
#' \item "list_of_datasets": > 1 "dataset"
#' \item "table": A flat table
#' \item "list_of_tables": The named list of L1 tables (i.e. read_data()$tables)
#' \item "dataset_old": The old, and since deprecated, return of \code{read_data()}
#' \item "list_of_datasets_old": > 1 "dataset_old"
#' }
#'
#' Unrecognized types will thorw an error.
#'
#' @noRd
#'
detect_data_type <- function(data){
table_names <- unique(read_criteria()$table)
# dataset
if (("list" %in% class(data)) & ("tables" %in% names(data))) {
if (sum(names(data) == "tables") == 1) {
return("dataset")
}
}
# list_of_datasets
if (("list" %in% class(data)) & (length(data) > 1)) {
res <- lapply(data, function(x) {"tables" %in% names(x)})
if (all(unlist(res))) {
return("list_of_datasets")
}
}
# table
if(all(class(data) %in% c("data.frame", "tbl_df", "tbl"))){
return("table")
}
# list_of_tables
if(("list" %in% class(data)) & any(table_names %in% names(data))) {
return("list_of_tables")
}
# dataset_old
is_dataset_old <- function(x) {
if ("list" %in% class(x)) {
if ("tables" %in% names(x)) {
return(FALSE)
}
if (length(x) == 1) {
if ("tables" %in% names(x[[1]])) {
return(TRUE)
}
}
}
return(FALSE)
}
if (is_dataset_old(data)) {
warning('Input to "data" is an old and deprecated format. Please use the ',
'new format instead. See ?read_data for more info.', call. = FALSE)
return("dataset_old")
}
# list_of_dataset_old
if (!is.null(data) & all(unlist(lapply(data, is_dataset_old)))) {
return("list_of_datasets_old")
}
# unrecognized
stop('Input to "data" is not one of the supported types.', call. = FALSE)
}
# Detect field delimiter of file
#
# @param path (character) Path in which \code{data.files} are found
# @param data.files (character) File names
# @param os (character) Return from \code{detect_os()}.
#
# @details Parses the verbose return from \code{data.table::fread()} to
# get the delimiter value. If this fails, then a secondary function is called utilizing the suggested \code{reader} package. If this secondary approach fails, then a default "," is returned.
#
# @return (character) Field delimiter of \code{data.files}
#
detect_delimiter <- function(path, data.files, os) {
f <- paste0(path, "/", data.files)
msg <- utils::capture.output(data.table::fread(f, verbose = TRUE) %>% {NULL}) # primary method
seps <- stringr::str_extract_all(msg, "(?<=(sep=')).+(?='[:blank:])")
sep <- unique(unlist(seps))
if (length(sep) == 1) {
return(sep)
} else {
warning("Could not detect field delimiter for ", f, ". Trying alternate ",
"method.", call. = FALSE)
if (!requireNamespace("reader", quietly = TRUE)) { # default value
warning("Package 'reader' is required for the alternate field delimiter",
" detection method but is not installed.", call. = FALSE)
warning("Could not detect field delimiter for ", f, ". Defaulting to ",
"','.", call. = FALSE)
return(",")
} else { # secondary method
res <- detect_delimiter_method_2(path, data.files, detect_os())
return(res)
}
}
}
# Get field delimiters of input files (method 2)
#
# @description
# Detect and return field delimiters of input files (tables).
#
# @param path
# (character) Path to files.
# @param data.files
# (character) File names.
# @param os
# (character) Operating system. Valid options are returned from
# \code{EDIutils::detect_os}.
#
# @return
# (character) Field delimiters of input files.
# \item{"\\t"}{tab}
# \item{","}{comma}
# \item{";"}{semi-colon}
# \item{"|"}{pipe}
#
detect_delimiter_method_2 <- function(path, data.files, os){
# Check for suggested package
if (!requireNamespace("reader", quietly = TRUE)) {
warning("Package 'reader' is required for delimiter detection but is not installed", call. = FALSE)
}
# Validate data tables
data_files <- validate_file_names(path, data.files)
# Detect field delimiters
# Loop through each table using reader::get.delim() to return the field
# delimiter. Note: reader::get.delim() performance seems to be operating
# system specific.
delim_guess <- c()
data_path <- c()
for (i in seq_along(data_files)){
# Initialize output vector
data_path[i] <- paste0(path, '/', data_files[i])
if (os == "mac"){
# Detect delimiter for table in Mac OS
delim_guess[i] <- suppressWarnings(
try(
reader::get.delim(
data_path[i],
n = 1,
delims = c('\t', ',', ';', '|')
),
silent = T
)
)
} else if (os == "win"){
# Detect delimiter for table in Windows OS
delim_guess[i] <- suppressWarnings(
try(
reader::get.delim(
data_path[i],
n = 1,
delims = c('\t', ',', ';', '|')
),
silent = T
)
)
} else if (os == 'lin'){
# Detect delimiter for table in Linux OS
delim_guess[i] <- suppressWarnings(
try(
reader::get.delim(
data_path[i],
n = 1,
delims = c('\t', ',', ';', '|')
),
silent = T
)
)
}
}
# Return
delim_guess
}
# Detect operating system
#
# @description
# This function uses \code{Sys.info} to detect the user's operating system
# and outputs an abbreviated character string to be used as inputs to OS
# specific function calls.
#
# @return
# \item{win}{Windows OS}
# \item{mac}{Mac OS}
#
detect_os <- function(){
sysinfo <- Sys.info()['sysname']
if (sysinfo == 'Darwin'){
os <- 'mac'
} else if (sysinfo == 'Windows'){
os <- 'win'
} else {
os <- 'lin'
}
os
}
# Unnest nested sites in the location table
#
# @param dt_loc
# (data.frame) The location table
# @return
# (data.frame) With columns location_id, site_name, latitude, longitude,
# elevation.
# @details
# Dereferences each of the parent_id, creates a site name that includes
# the site names of each parent, and adds the lowest latitude, longitude
# and elevation available in the table.
#
flatten_location_dwca <- function(dt_loc) {
# Expand location table
# Rewrite names of locations to indicate their nested arrangements and expand
# corresponding latitude, longitude, and elevation
loc_name_combined <- rep(NA_character_, nrow(dt_loc))
for (i in 1:length(dt_loc$location_id)) {
if (!is.na(dt_loc$parent_location_id[i])) {
id_out <- dt_loc$location_id[i]
id <- dt_loc$location_id[i]
cont <- TRUE
while (isTRUE(cont)) {
if (!is.na(dt_loc$parent_location_id[id == dt_loc$location_id])) {
id_out[length(id_out) + 1] <- dt_loc$parent_location_id[id == dt_loc$location_id]
id <- dt_loc$parent_location_id[id == dt_loc$location_id]
} else {
cont <- FALSE
}
}
loc_name_combined[i] <- paste(
dt_loc$location_name[
dt_loc$location_id %in% rev(id_out)],
collapse = ".")
# Supress warnings for cases when no latitude is available
lat_i <- suppressWarnings(
max(
which(
!is.na(
dt_loc$latitude[
dt_loc$location_id %in% rev(id_out)]))))
# Supress warnings for cases when no longitude is available
lon_i <- suppressWarnings(
max(
which(
!is.na(
dt_loc$longitude[
dt_loc$location_id %in% rev(id_out)]))))
# Supress warnings for cases when no elevation is available
elv_i <- suppressWarnings(
max(
which(
!is.na(
dt_loc$elevation[
dt_loc$location_id %in% rev(id_out)]))))
if (!is.na(lat_i) & !is.na(lon_i)) {
if (lat_i == lon_i) {
fill <- dt_loc$latitude[dt_loc$location_id %in% rev(id_out)]
fill[is.na(fill)] <- dt_loc$latitude[dt_loc$location_id %in% rev(id_out)][lat_i]
dt_loc$latitude[dt_loc$location_id %in% rev(id_out)] <- fill
fill <- dt_loc$longitude[dt_loc$location_id %in% rev(id_out)]
fill[is.na(fill)] <- dt_loc$longitude[dt_loc$location_id %in% rev(id_out)][lat_i]
dt_loc$longitude[dt_loc$location_id %in% rev(id_out)] <- fill
if (elv_i == lat_i) {
fill <- dt_loc$elevation[dt_loc$location_id %in% rev(id_out)]
fill[is.na(fill)] <- dt_loc$elevation[dt_loc$location_id %in% rev(id_out)][lat_i]
dt_loc$elevation[dt_loc$location_id %in% rev(id_out)] <- fill
}
}
}
}
}
# Create the expanded location table
loc_name_combined[is.na(dt_loc$parent_location_id)] <-
dt_loc$location_name[is.na(dt_loc$parent_location_id)]
dt_loc_expanded <- dt_loc
dt_loc_expanded$location_name <- loc_name_combined
dt_loc_expanded$parent_location_id <- NULL
# Return
dt_loc_expanded
}
# Get attribute definitions from EML
#
# @param eml (xml_document, xml_node) EML metadata
#
# @return (named list) Definitions
#
# @note Duplicate names are dropped.
#
get_attr_defs <- function(eml) {
nodes <- attrs <- xml2::xml_find_all(eml, ".//dataTable")
nmes <- xml2::xml_text(xml2::xml_find_all(nodes, ".//attribute/attributeName"))
defs <- xml2::xml_text(xml2::xml_find_all(nodes, ".//attribute/attributeDefinition"))
dups <- duplicated(nmes)
if (any(dups)) {
# warning("Duplicate attribute names were found in the parent EML when looking up definitions for attributes of this dataset. Dropping these attributes: ", paste(nmes[dups], collapse = ", "), call. = FALSE)
nmes <- nmes[!dups]
defs <- defs[!dups]
}
res <- defs
names(res) <- nmes
return(res)
}
# Get end of line (EOL) character
#
# @description
# Get EOL character of input file(s).
#
# @param path
# (character) A path to the target file directory.
# @param file.name
# (character) The target file name.
#
# @return
# A character string representation of the EOL character.
#
get_eol <- function(path, file.name){
file_name <- validate_file_names(path, file.name)
output <- readChar(paste0(path, '/', file.name), nchars = 10000)
eol <- parse_delim(output)
return(eol)
}
#' Get the dataset \code{id} from a \code{data} argument
#'
#' @description Several functions use the \code{id} parameter. This helper function gets the \code{id} if it can be found in \code{data}.
#'
#' @param data (list or tbl_df, tbl, data.frame) The dataset object returned by \code{read_data()}, a named list of tables containing the observation table, or a flat table containing columns of the observation table.
#'
#' @return (character) The dataset identifier
#'
#' @noRd
#'
get_id <- function(data) {
# Get the id from allowed object types and return NA if missing
if (detect_data_type(data) == "dataset") {
res <- data$id
if (is.null(res)) {
res <- NA_character_
}
} else if (detect_data_type(data) == "dataset_old") {
res <- names(data)
if (is.null(res)) {
res <- NA_character_
}
} else {
res <- NA_character_
}
return(res)
}
#' Get the observation table from a \code{data} argument
#'
#' @description Several functions operate on the observation table but accept a broader set of inputs via the \code{data} parameter. This helper function does that.
#'
#' @param data (list or tbl_df, tbl, data.frame) The dataset object returned by \code{read_data()}, a named list of tables containing the observation table, or a flat table containing columns of the observation table.
#'
#' @return (tbl_df, tbl, data.frame) The observation table.
#'
#' @noRd
#'
get_observation_table <- function(data) {
# Get the observation table from allowed object types and error if missing
if (detect_data_type(data) == "dataset") {
table <- data$tables[["observation"]]
} else if (detect_data_type(data) == "list_of_tables") {
table <- data[["observation"]]
} else if (detect_data_type(data) == "dataset_old") {
table <- data[[1]]$tables[["observation"]]
}
if (is.null(table)) {
stop('Input argument "data" does not contain the observation table',
call. = FALSE)
}
if (detect_data_type(data) == "table") {
table <- data %>% dplyr::distinct()
}
# Extract all columns of the observation table and error if missing
criteria <- dplyr::filter(read_criteria(), table == "observation")
obs_cols <- stats::na.omit(criteria$column)
res <- dplyr::select(table, dplyr::all_of(obs_cols))
return(res)
}
# Does dataset ID belong to EDI?
#
# @param id (character) Dataset identifier
#
# @return (logical) TRUE if is an EDI identifier, otherwise FALSE
#
is_edi <- function(id) {
res <- stringr::str_detect(
string = id,
pattern = paste0("(^knb-lter-[:alpha:]+\\.[:digit:]+\\.[:digit:]+)|",
"(^[:alpha:]+\\.[:digit:]+\\.[:digit:]+)"))
return(res)
}
# Does dataset ID belong to NEON?
#
# @param id (character) Dataset identifier
#
# @return (logical) TRUE if is a NEON identifier, otherwise FALSE
#
is_neon <- function(id) {
res <- stringr::str_detect(string = id, pattern = "^neon\\.")
return(res)
}
# Is provenance node?
#
# @param nodeset (xml_nodeset) methods nodeset at \code{/eml:eml/dataset/methods/methodStep}
#
# @details Looks for provenance in \code{./dataSource}
#
# @return (logical) TRUE if nodeset has provenance
#
is_prov <- function(nodeset) {
dasource <- xml2::xml_find_all(nodeset, "./dataSource")
res <- !is_empty_nodeset(dasource)
return(res)
}
# Parse datetime format from values
#
# @param vals (character) Vector of datetimes
#
# @details Only works for \code{vals} of the format "YYYY-MM-DD hh:mm:ss" and subsets thereof. Values in other formats will return errant formats (e.g. "07/20/2021" returns "YYYY-MM-DD hh").
#
# @return (character) Datetime format string of \code{vals}
#
parse_datetime_frmt_from_vals <- function(vals) {
# Modify inputs for processing
vals <- as.character(vals)
# Best match has the fewest coercions
na_start <- sum(is.na(vals))
na_end <- suppressWarnings(
c(sum(is.na(lubridate::parse_date_time(vals, "ymdHMS"))),
sum(is.na(lubridate::parse_date_time(vals, "ymdHM"))),
sum(is.na(lubridate::parse_date_time(vals, "ymdH"))),
sum(is.na(lubridate::parse_date_time(vals, "ymd"))),
sum(is.na(lubridate::parse_date_time(vals, "y")))))
na_coerced <- na_end - na_start
if (stats::var(na_coerced) == 0) { # When format of vals are NA or unsupported
frmt <- NULL
} else { # When format of vals are supported
best_match <- which(na_coerced == min(na_coerced))[1]
frmt <- c("YYYY-MM-DD hh:mm:ss",
"YYYY-MM-DD hh:mm",
"YYYY-MM-DD hh",
"YYYY-MM-DD",
"YYYY")[best_match]
if (min(na_coerced) != 0) { # When the best match doesn't represent all vals
warning("The best match '", frmt, "' may not describe all datetimes")
}
}
return(frmt)
}
# Parse datetime when format string is known
#
# @param tbl (character) Table name \code{vals} come from. This is used in warning messages.
# @param vals (character) Vector of datetimes
# @param frmt (character) Datetime format string
#
# @details A wrapper to to \code{lubridate::ymd()}, \code{lubridate::ymd_h()}, \code{lubridate::ymd_hm()}, and \code{lubridate::ymd_hms()}.
#
# @note No attempt is made at using the time zone component of \code{frmt}. Years (\code{frmt = "YYYY"}) are parsed to dates (\code{frmt = "YYYY-MM-DD"}) and a warning is raised.
#
# @return (POSIXct POSIXt) Datetimes parsed
#
parse_datetime_from_frmt <- function(tbl, vals, frmt) {
# Modify inputs for processing below
vals <- as.character(vals)
na_i <- sum(is.na(vals))
vals <- stringr::str_remove_all(vals, "(Z|z).+$")
# Parse datetimes using lubridate
if (frmt == "YYYY") {
res <- "y"
parsed <- lubridate::parse_date_time(vals, res)
warning("Input datetimes have format 'YYYY' but are being returned as 'YYYY-MM-DD'.", call. = FALSE)
} else {
res <- "ymd"
t <- unlist(stringr::str_split(frmt, "T|[:blank:]"))[2] # time format
if (!is.na(t)) { # build time component of lubridate func call
if (stringr::str_detect(tolower(t), "hh")) {
res <- paste0(res, "_h")
}
if (stringr::str_detect(tolower(t), "mm")) {
res <- paste0(res, "m")
}
if (stringr::str_detect(tolower(t), "ss")) {
res <- paste0(res, "s")
}
}
parsed <- suppressWarnings(
eval(parse(text = paste0("lubridate::", res, "(vals)"))))
}
# Warn user of parsing issues
na_f <- sum(is.na(parsed))
if (na_f > na_i) {
warning((na_f - na_i), " ", tbl, " datetime strings failed to parse. Use parse_datetime = 'FALSE' to get datetimes as character strings for manual processing.")
}
return(parsed)
}
# Parse delimiter from string
parse_delim <- function(x){
use_i <- stringr::str_detect(
x,
'\\r\\n'
)
if (sum(use_i) > 0){
eol <- '\\r\\n'
} else {
use_i <- stringr::str_detect(
x,
'\\n'
)
if (sum(use_i) > 0){
eol <- '\\n'
} else {
eol <- '\\r'
}
}
eol
}
# Is the EDI Data Repository accessible?
#
ping_edi <- function() {
r <- tryCatch(
httr::RETRY("GET", url = "https://pasta.lternet.edu/package/eml/edi/759", quiet = TRUE), # Warn if EDI is down
error = function(e) FALSE,
warning = function(w) FALSE
)
if (is.logical(r)) {
stop(
"The EDI Repository is down for regular maintenance (Wednesday 01:00",
" - 03:00 UTC). If you have reached this message outside maintenance",
" hours, then there is an unexpected issue that will be resolved ",
"shortly. Our apologies for the inconvenience. Please try again ",
"later."
)
}
}
# Get previous data package version
#
# @param package.id (character) Data package identifier
#
# @return (character) Previous data package version
#
# @details Supports repository specific methods.
#
get_previous_version <- function(package.id) {
# Load Global Environment config
if (exists("config.repository", envir = .GlobalEnv)) {
repository <- get("config.repository", envir = .GlobalEnv)
} else {
repository <- "EDI"
}
if (exists("config.environment", envir = .GlobalEnv)) {
environment <- get("config.environment", envir = .GlobalEnv)
} else {
environment <- "production"
}
# Repository specific methods
if (repository == "EDI") {
parts <- unlist(stringr::str_split(package.id, "\\."))
vers <- suppressMessages(
api_list_data_package_revisions(
scope = parts[1],
identifier = parts[2],
environment = environment))
if (length(vers) == 1) {
return("0")
}
parts[3] <- vers[length(vers) - 1]
parts <- paste(parts, collapse = ".")
return(parts)
}
}
# Increment data package version number
#
# @param package.id (character) Data package identifier
#
# @return (character) Package identifier with version number incremented by 1.
#
# @details Supports repository specific methods.
#
#
increment_package_version <- function(package.id) {
# Load Global Environment config
if (exists("config.repository", envir = .GlobalEnv)) {
repository <- get("config.repository", envir = .GlobalEnv)
} else {
repository <- "EDI"
}
# Repository specific methods
if (repository == "EDI") {
parts <- unlist(stringr::str_split(package.id, "\\."))
parts[3] <- as.character(as.numeric(parts[3]) + 1)
parts <- paste(parts, collapse = ".")
return(parts)
}
}
# Is empty nodeset?
#
# @param nodeset (xml_nodeset) Any nodeset returned by the xml2 library
#
# @return (logical) TRUE if nodeset length = 0
#
is_empty_nodeset <- function(nodeset) {
res <- length(nodeset) == 0
return(res)
}
# Join observation, location, and taxon tables in a wide format
#
# @param dt_obs
# (data.frame) The observation table
# @param dt_loc
# (data.frame) The location table
# @param dt_tax
# (data.frame) The taxon table
# @return
# (data.frame) Joined observation, location, and taxon tables in a wide
# format, where the location table has been unnested for latitude,
# longitude, and site names.
#
join_obs_loc_tax <- function(dt_obs, dt_loc, dt_tax) {
# Flatten location
dt_loc_expanded <- flatten_location_dwca(dt_loc)
# Left join
# Left join observation, location (expanded), and taxon tables
# TO DO: ask Colin for his naming convention for temporary objects
temp <- dplyr::left_join(
dplyr::left_join(
dt_obs, dt_loc_expanded,
by = "location_id"),
dt_tax, by = "taxon_id")
return(temp)
}
# Read ecocomDP criteria
#
# @return (data.frame) ecocomDP criteria
#
read_criteria <- function() {
res <- data.table::fread(
system.file('extdata', 'validation_criteria.txt', package = 'ecocomDP'))
return(res)
}
# Read EML metadata from a data repository
#
# @description A wrapper function to repository specific read methods (the repository arg drives the logic).
#
# @param package.id (character) Data package identifier
#
# @return (xml_document, xml_node) EML metadata
#
read_eml <- function(package.id) {
# Load Global Environment config
if (exists("config.repository", envir = .GlobalEnv)) {
repository <- get("config.repository", envir = .GlobalEnv)
} else {
repository <- "EDI"
}
if (exists("config.environment", envir = .GlobalEnv)) {
environment <- get("config.environment", envir = .GlobalEnv)
} else {
environment <- "production"
}
# Get EML
if (repository == "EDI") {
eml <- api_read_metadata(package.id, environment)
}
return(eml)
}
# Read EML into an emld list object
#
# @description
# This function wraps \code{EML::read_eml()} with a layer of quality
# control ensuring the returned emld list object has the same structure
# as output by \code{EMLassemblyline::make_eml()} and can be used in
# EMLassemblyline workflows.
#
# @param path
# (character) Path to the metadata template directory and where
# annotations.txt will be written.
# @param eml
# (file) An EML .xml file located at \code{path}.
#
# @return
# An emld list object as similarly created by \code{EML::read_eml()}.
#
# @details
# When representing EML in the emld list structure, nodes that have
# 1 or more children are structured as a list of unnamed lists
# (e.g. \code{list(dataTable = list("dataTable1", "dataTable2"))}) and
# this is the structure output by EMLassemblyline::make_eml(). However,
# EML::read_eml() removes the unnamed list when the node has only 1 child
# (e.g. \code{list(dataTable = "dataTable1")}), thereby breaking
# EMLassemblyline code using \code{lapply()} to parse such nodes.
# Currently this QC is selectively applied to annotatable nodes targeted
# by \code{template_annotations()}:
#
# \itemize{
# \item eml/dataset/dataTable
# \item eml/dataset/dataTable/attributeList/attribute
# \item eml/dataset/otherEntity
# \item eml/dataset/creator
# \item eml/dataset/contact
# \item eml/dataset/associatedParty
# \item eml/dataset/project/personnel
# \item eml/dataset/project/relatedProject
# \item eml/dataset/project/relatedProject/personnel
# }
#
# Extending support to all nodes capable of having 1 or more children is
# welcomed.
#
#
EAL_read_eml <- function(path, eml) {
# Create the emld list object
eml <- EML::read_eml(paste0(path, "/", eml))
# A helper function to wrap target nodes in list(). There are two
# implementations, one for target nodes and a second for nested target nodes.
#
# Arguments:
# eml = emld list object
# path.parent = path of the parent node using the "$" subsetting character
# path.child = path of child node
list_it <- function(eml, path.parent, path.child = NULL) {
if (is.null(path.child)) {
e <- eval(parse(text = path.parent))
if ((length(e) > 1) & (!is.null(names(e)))) {
eval(parse(text = paste0(path.parent, " <- list(e)")))
}
} else if (!is.null(path.child)) {
for (k in seq_along(eval(parse(text = path.parent)))) {
if ((length(eval(parse(text = paste0(path.parent, "[[", k, "]]", path.child)))) > 1) &
(!is.null(names(eval(parse(text = paste0(path.parent, "[[", k, "]]", path.child))))))) {
strng <- paste0(path.parent, "[[", k, "]]",
path.child, " <- list(",
paste0(path.parent, "[[", k, "]]", path.child), ")")
eval(parse(text = strng))
}
}
}
eml
}
# Fix the emld list object
eml <- list_it(eml, "eml$dataset$dataTable")
eml <- list_it(eml, "eml$dataset$otherEntity")
eml <- list_it(eml, "eml$dataset$creator")
eml <- list_it(eml, "eml$dataset$contact")
eml <- list_it(eml, "eml$dataset$associatedParty")
eml <- list_it(eml, "eml$dataset$project$personnel")
eml <- list_it(eml, "eml$dataset$project$relatedProject")
eml <- list_it(eml, "eml$dataset$project$relatedProject", "$personnel")
eml <- list_it(eml, "eml$dataset$dataTable", "$attributeList$attribute")
eml
}
# Read the ecocomDP dataset_summary table (from EDI)
#
# @description
# Use this function to read the dataset_summary table of an ecocomDP data
# package from the EDI Data Repository.
#
# @param package.id
# (character) Data package identifier of an ecocomDP dataset in the EDI
# data repository.
#
# @return
# (tibble) The dataset_summary table
#
read_table_dataset_summary <- function(package.id){
message("Reading dataset_summary table for ", package.id)
eml <- suppressMessages(api_read_metadata(package.id))
entity_name <- xml2::xml_text(
xml2::xml_find_all(eml, './/dataset/dataTable/physical/objectName'))
if (any(stringr::str_detect(entity_name, 'dataset_summary'))) {
entity_delimiter <- xml2::xml_text(
xml2::xml_find_all(
eml,
'.//dataset/dataTable/physical/dataFormat/textFormat/simpleDelimited/fieldDelimiter'))[
stringr::str_detect(entity_name, 'dataset_summary')]
entity_url <- xml2::xml_text(
xml2::xml_find_all(
eml,
'.//dataset/dataTable/physical/distribution/online/url'))[
stringr::str_detect(entity_name, 'dataset_summary')]
if (entity_delimiter == ',') {
output <- data.table::fread(entity_url)
} else if (entity_delimiter == '\\t') {
output <- data.table::fread(entity_url)
}
} else {
output <- NULL
}
output
}
remove_empty_templates <- function(x) {
# Removes empty templates (NULL, data frames with 0 rows, or TextType of 0
# characters) from the list object created by template_arguments().
# x = template_arguments()$x
attr_tmp <- read_template_attributes()
use_i <- rep(F, length(x$template))
for (i in 1:length(x$template)) {
if (is.null(x$template[[i]]$content)) {
use_i[i] <- T
} else {
if (any(attr_tmp$template_name ==
tools::file_path_sans_ext(names(x$template[i])))) {
if ((attr_tmp$type[
attr_tmp$template_name ==
tools::file_path_sans_ext(names(x$template[i]))]) == "text") {
if (sum(nchar(unlist(x$template[[i]]))) == 0) {
use_i[i] <- T
}
} else if ((attr_tmp$type[
attr_tmp$template_name ==
tools::file_path_sans_ext(names(x$template[i]))]) == "xml") {
if (length(x$template[[i]]$content$taxonomicClassification) == 0) {
use_i[i] <- T
}
} else {
if (nrow(x$template[[i]]$content) == 0) {
use_i[i] <- T
}
}
}
}
}
if (all(use_i)) {
x["template"] <-list(NULL)
} else {
x$template[use_i] <- NULL
}
x
}
# Make URL for PASTA+ environment
#
# @description
# Create the URL suffix to the PASTA+ environment specified by the
# environment argument.
#
# @param environment
# (character) Data repository environment to perform the evaluation in.
# Can be: 'development', 'staging', 'production'.
#
url_env <- function(environment){
environment <- tolower(environment)
if (environment == 'development'){
url_env <- 'https://pasta-d'
} else if (environment == 'staging'){
url_env <- 'https://pasta-s'
} else if (environment == 'production'){
url_env <- 'https://pasta'
}
url_env
}
# Trim data object for faster tests
#
# @param dataset (list) Data list object returned by \code{read_data()}
#
# @return (list of data frames) \code{data.list} with some content removed.
#
trim_data_for_test <- function(dataset) {
# Remove variable_mapping so validate_mapped_id() doesn't overload target
# APIs
dataset$tables$variable_mapping <- NULL
return(dataset)
}
# Validate file names
#
# @description
# Identify whether input data file names exist in the specified directory.
#
# @param path
# (character) A character string specifying a path to the dataset working
# directory.
# @param data.files
# A list of character strings specifying the names of the data files of
# your dataset.
#
# @return
# A warning message if the data files don't exist at path, and which of
# the input data files are missing.
#
# The full names of files listed in the data.files argument.
#
validate_file_names <- function(path, data.files){
# Validate file presence
# Index data.files in path
files <- list.files(path)
use_i <- data.files %in% files
# Throw an error if any data.files are missing
if (sum(use_i) != length(data.files)){
stop(
paste0(
"\nThese files don't exist in the specified directory:\n",
paste(data.files[!use_i], collapse = "\n")
),
call. = FALSE
)
}
# Check file naming convention
# Index file names that are not composed of alphanumerics and underscores
use_i <- stringr::str_detect(
string = tools::file_path_sans_ext(data.files),
pattern = "([:blank:]|([:punct:]^_))"
)
# Issue warning if this best practice is not followed
if (any(isTRUE(use_i))) {
warning(
paste0(
"Composing file names from only alphanumerics and underscores is a ",
"best practice. These files don't follow this recommendation:\n",
paste(data.files[use_i], collapse = "\n"),
"\nPlease consider renaming these files."
),
call. = FALSE
)
}
# Get file names
files <- list.files(path)
use_i <- stringr::str_detect(string = files,
pattern = stringr::str_c("^", data.files, collapse = "|"))
data_files <- files[use_i]
# Reorder file names to match input ordering
data_files_out <- c()
for (i in 1:length(data.files)){
use_i <- stringr::str_detect(string = data_files,
pattern = stringr::str_c("^", data.files[i], collapse = "|"))
data_files_out[i] <- data_files[use_i]
}
data_files_out
}
# Validate path
#
# @description
# Use \code{dir.exists} to determine whether the input path is valid and
# returns an error message if not.
#
# @param path
# A character string specifying a path to the dataset working directory.
#
# @return
# A warning message if the path leads to a non-existant directory.
#
validate_path <- function(path){
# Validate path
if (!dir.exists(path)){
stop('The directory specified by the argument "path" does not exist! Please enter the correct path for your dataset working directory.')
}
}
# Search for an LTER Controlled Vocabulary term
#
# @param x
# (character) A term to search for.
# @param messages
# (logical) Display diagnostic messages, e.g. alternative spelling options.
# @param interactive
# (logical) Query user to select from alternative terms and returns back
# selection.
#
# @return
# Logical value (TRUE/FALSE) indicating whether the searched term could
# be found.
#
# If messages = TRUE, then alternative spellings and near misses
# are displayed.
#
# If interactive mode = TRUE, then a user selected term is returned.
#
vocab_lter_term <- function(x, messages = FALSE, interactive = FALSE){
# The LTER controlled vocabulary produces different results for a standard
# search and fuzzy (similar) search. Both searches are run and results
# combined, then direct matches sought and if not found then all results
# are presented as near misses.
# Check arguments -----------------------------------------------------------
if (is.character(x) != T){
stop('Input argument "x" is not of class "character"!')
}
if (length(x) != 1){
stop('Input argument "x" has a length > 1! Only single terms are allowed.')
}
if (!missing(messages) & isTRUE(messages) & !missing(interactive) & isTRUE(interactive)){
stop('Both arguments "messages" & "interactive" can not be used at the same time. Please select one or the other.')
}
# Construct the query and search --------------------------------------------
term <- stringr::str_replace_all(
string = x,
pattern = ' ',
replacement = '+'
)
# Standard search
search_output <- xml2::read_xml(
paste0(
'http://vocab.lternet.edu/vocab/vocab/services.php/?task=search&arg=',
term
)
)
# Fuzzy search
fuzzy_output <- xml2::read_xml(
paste0(
'http://vocab.lternet.edu/vocab/vocab/services.php/?task=fetchSimilar&arg=',
term
)
)
# Parse the responses and combine -------------------------------------------
term_list <- c()
# Get standard terms
if (length(xml2::xml_find_all(search_output, './/result')) != 0){
nodeset <- xml2::xml_find_all(search_output, './/result/term/string')
node_terms <- xml2::xml_text(nodeset)
term_list <- c(term_list, node_terms)
}
# Get fuzzy terms
if (length(xml2::xml_find_all(fuzzy_output, './/result')) != 0){
nodeset <- xml2::xml_find_all(fuzzy_output, './/result/string')
node_terms <- xml2::xml_text(nodeset)
term_list <- c(term_list, node_terms)
}
# Remove duplicates
term_list <- unique(term_list)
# Is the search term listed? ------------------------------------------------
if (sum(term_list == x) == 1){
term_found <- T
} else {
term_found <- F
}
# Report near misses --------------------------------------------------------
if (!missing(messages) & isTRUE(messages) & (!isTRUE(term_found)) & (length(term_list) != 0)){
msg <- message(
paste0(
'The term "',
x,
'" could not be found in the LTER Controlled Vocabulary. Possible alternatives:',
'\n',
paste0(
term_list,
collapse = '\n'
),
'\n'
)
)
}
# Interactive mode ----------------------------------------------------------
if (!missing(interactive) & isTRUE(interactive) & (!isTRUE(term_found)) & (length(term_list) != 0)){
msg <- message(
paste0(
'The term "',
x,
'" could not be found in the LTER Controlled Vocabulary. Possible alternatives:',
'\n'
)
)
term_list <- c(term_list, 'NONE OF THE ABOVE')
print.data.frame(as.data.frame(term_list))
answer <- readline('Enter the row number of the term you would like to use: ')
alternative_term <- as.character(term_list[as.numeric(answer)])
message(paste0('You selected ... ', alternative_term, '\n'))
}
# Output results ------------------------------------------------------------
if (!missing(interactive) & isTRUE(interactive) & (!isTRUE(term_found)) & (length(term_list) != 0)){
alternative_term
} else {
term_found
}
}
# Resolve terms to a controlled vocabulary
#
# @description
# Resolve terms to a controlled vocabulary.
#
# @param x
# (character) Term(s) to resolve to a controlled vocabulary. Can be a
# vector of terms.
# @param cv
# (character) A controlled vocabulary to search. Valid options are:
# \itemize{
# \item lter - The LTER Controlled Vocabulary (http://vocab.lternet.edu/vocab/vocab/index.php)
# }
# @param messages
# (logical) Display diagnostic messages, e.g. alternative spelling options.
# @param interactive
# (logical) Query user to select from alternative terms and returns back
# selection.
#
# @return
# (character) Controlled vocabulary names corresponding to successfully
# resolved terms.
#
vocab_resolve_terms <- function(x, cv, messages = FALSE, interactive = FALSE){
# Check arguments
if (is.character(x) != T){
stop('Input argument "x" is not of class "character"!')
}
if (cv != 'lter'){
stop('Input argument "cv" is not one of the allowed vocabularies!')
}
if (!missing(messages) & isTRUE(messages) & !missing(interactive) & isTRUE(interactive)){
stop('Both arguments "messages" & "interactive" can not be used at the same time. Please select one or the other.')
}
# Initialize output
output <- data.frame(
term = x,
controlled_vocabulary = character(length(x)),
stringsAsFactors = F)
# Call specified vocabularies
if (cv == 'lter'){
if (!missing(messages) & isTRUE(messages)){
# Messages
use_i <- unlist(lapply(x, FUN = vocab_lter_term, messages = T))
output[use_i, 'controlled_vocabulary'] <- 'LTER Controlled Vocabulary'
} else if (!missing(interactive) & isTRUE(interactive)){
# Interactive
alternative_terms <- unlist(lapply(x, FUN = vocab_lter_term, interactive = T))
use_i <- ((alternative_terms == 'NONE OF THE ABOVE') | (is.na(alternative_terms)))
output[!use_i, 'term'] <- alternative_terms[!use_i]
output$term[output$term == 'TRUE'] <- x[output$term == 'TRUE']
output[!use_i, 'controlled_vocabulary'] <- 'LTER Controlled Vocabulary'
use_i <- output$term == FALSE
output$term[use_i] <- x[use_i]
output$controlled_vocabulary[use_i] <- ''
} else {
# Automatic
use_i <- unlist(lapply(x, FUN = vocab_lter_term))
output[use_i, 'controlled_vocabulary'] <- 'LTER Controlled Vocabulary'
}
}
# Return output
output
}
#' Write tables to file
#'
#' @param path (character) A path to the directory in which the files will be written.
#' @param sep (character) Field delimiter to use when writing files. Default is comma.
#' @param observation (tbl_df, tbl, data.frame) The observation table.
#' @param location (tbl_df, tbl, data.frame) The location table.
#' @param taxon (tbl_df, tbl, data.frame) The taxon table.
#' @param dataset_summary (tbl_df, tbl, data.frame) The dataset_summary table.
#' @param observation_ancillary (tbl_df, tbl, data.frame) The observation_ancillary table.
#' @param location_ancillary (tbl_df, tbl, data.frame) The location_ancillary table.
#' @param taxon_ancillary (tbl_df, tbl, data.frame) The taxon_ancillary table.
#' @param variable_mapping (tbl_df, tbl, data.frame) The variable_mapping table.
#'
#' @return ecocomDP tables as \code{sep} delimited files
#'
#' @export
#'
#' @examples
#' # Create directory for the tables
#' mypath <- paste0(tempdir(), "/data")
#' dir.create(mypath)
#'
#' # Create a couple inputs to write_tables()
#'
#' flat <- ants_L0_flat
#'
#' observation <- create_observation(
#' L0_flat = flat,
#' observation_id = "observation_id",
#' event_id = "event_id",
#' package_id = "package_id",
#' location_id = "location_id",
#' datetime = "datetime",
#' taxon_id = "taxon_id",
#' variable_name = "variable_name",
#' value = "value",
#' unit = "unit")
#'
#' observation_ancillary <- create_observation_ancillary(
#' L0_flat = flat,
#' observation_id = "observation_id",
#' variable_name = c("trap.type", "trap.num", "moose.cage"))
#'
#' # Write tables to file
#'
#' write_tables(
#' path = mypath,
#' observation = observation,
#' observation_ancillary = observation_ancillary)
#'
#' dir(mypath)
#'
#' # Clean up
#' unlink(mypath, recursive = TRUE)
#'
write_tables <- function(
path, sep = ",", observation = NULL, location = NULL,
taxon = NULL, dataset_summary = NULL, observation_ancillary = NULL,
location_ancillary = NULL, taxon_ancillary = NULL, variable_mapping = NULL) {
# Validate arguments
if (missing(path)){
stop('Input argument "path" is required.', call. = FALSE)
}
# Write tables to file
message('Writing tables to file:')
if (sep == ",") {
suffix <- ".csv"
} else {
suffix <- ".txt"
}
if (!is.null(observation)) {
message(" observation")
f <- paste0(path, "/", paste0("observation", suffix))
data.table::fwrite(x = observation, file = f, sep = sep, na = "NA")
}
if (!is.null(location)) {
message(" location")
f <- paste0(path, "/", paste0("location", suffix))
data.table::fwrite(x = location, file = f, sep = sep, na = "NA")
}
if (!is.null(taxon)) {
message(" taxon")
f <- paste0(path, "/", paste0("taxon", suffix))
data.table::fwrite(x = taxon, file = f, sep = sep, na = "NA")
}
if (!is.null(dataset_summary)) {
message(" dataset_summary")
f <- paste0(path, "/", paste0("dataset_summary", suffix))
data.table::fwrite(x = dataset_summary, file = f, sep = sep, na = "NA")
}
if (!is.null(observation_ancillary)) {
message(" observation_ancillary")
f <- paste0(path, "/", paste0("observation_ancillary", suffix))
data.table::fwrite(x = observation_ancillary, file = f, sep = sep, na = "NA")
}
if (!is.null(location_ancillary)) {
message(" location_ancillary")
f <- paste0(path, "/", paste0("location_ancillary", suffix))
data.table::fwrite(x = location_ancillary, file = f, sep = sep, na = "NA")
}
if (!is.null(taxon_ancillary)) {
message(" taxon_ancillary")
f <- paste0(path, "/", paste0("taxon_ancillary", suffix))
data.table::fwrite(x = taxon_ancillary, file = f, sep = sep, na = "NA")
}
if (!is.null(variable_mapping)) {
message(" variable_mapping")
f <- paste0(path, "/", paste0("variable_mapping", suffix))
data.table::fwrite(x = variable_mapping, file = f, sep = sep, na = "NA")
}
}
# Get XML values
#
# @param nodeset (xml_node/xml_nodeset) Nodeset
# @param xpath (character) xpath
#
# @return (character) Value of \code{xpath} within \code{nodeset}. Returns "" if returned character string has length = 1.
#
# @details Simplifies code by wrapping \code{cnvmt(xml2::xml_text(xml2::xml_find_all(...), trim = T))}
#
xml_val <- function(nodeset, xpath) {
res <- cnvmt(
xml2::xml_text(
xml2::xml_find_all(nodeset, xpath),
trim = T))
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.