Nothing
ansari.exact <- function(x, ...) UseMethod("ansari.exact")
ansari.exact.default <-
function(x, y, alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95, ...)
{
alternative <- match.arg(alternative)
if(conf.int) {
if(!((length(conf.level) == 1)
&& is.finite(conf.level)
&& (conf.level > 0)
&& (conf.level < 1)))
stop("conf.level must be a single number between 0 and 1")
}
DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
if(!is.numeric(x)) stop("`x' must be numeric")
if(!is.numeric(y)) stop("`y' must be numeric")
x <- x[complete.cases(x)]
y <- y[complete.cases(y)]
m <- length(x)
if(m < 1)
stop("not enough x observations")
n <- length(y)
if(n < 1)
stop("not enough y observations")
N <- m + n
r <- cscores(c(x, y), type="Ansari")
STATISTIC <- sum(r[seq(along = x)])
if(is.null(exact))
exact <- ((m < 50) && (n < 50))
if(exact) {
PVAL <-
switch(alternative,
two.sided = pperm(STATISTIC, r, m, alternative="two.sided"),
less = pperm(STATISTIC, r, m, alternative="less"),
greater = pperm(STATISTIC, r, m, alternative="greater"))
if (conf.int) {
alpha <- 1 - conf.level
x <- sort(x)
y <- sort(y)
ab <- function(sig, zq = 0) {
rab <- rank(c(x/sig, y))
sum(pmin(rab, N - rab + 1)[seq(along = x)])
}
ratio <- outer(x,y,"/")
aratio <- ratio[ratio >= 0]
sigma <- sort(aratio)
cci <- function(alpha) {
u <- absigma - qperm(alpha/2, r, m)
l <- absigma - qperm(1 - alpha/2, r, m)
## Check if the statistic exceeds both quantiles first.
uci <- NULL
lci <- NULL
if(length(u[u >= 0]) == 0 || length(l[l > 0]) == 0) {
warning(paste("Samples differ in location: Cannot",
"compute confidence set, returning NA"))
return(c(NA, NA))
}
if (is.null(uci)) {
u[u < 0] <- NA
uci <- min(sigma[which(u == min(u, na.rm=TRUE))])
}
if (is.null(lci)) {
l[l <= 0] <- NA
lci <- max(sigma[which(l == min(l, na.rm=TRUE))])
}
## The process of the statistics does not need to be
## monotone in sigma: check this and interchange quantiles.
if (uci > lci) {
l <- absigma - qperm(alpha/2, r, m)
u <- absigma - qperm(1 - alpha/2, r, m)
u[u < 0] <- NA
uci <- min(sigma[which(u == min(u, na.rm=TRUE))])
l[l <= 0] <- NA
lci <- max(sigma[which(l == min(l, na.rm=TRUE))])
}
c(uci, lci)
}
cint <- if(length(sigma) < 1) {
warning("Cannot compute confidence set, returning NA")
c(NA, NA)
}
else {
## Compute statistics directly: computing the steps is
## not faster.
absigma <-
sapply(sigma + c(diff(sigma)/2,
sigma[length(sigma)]*1.01), ab)
switch(alternative, two.sided = {
cci(alpha)
}, greater= {
c(cci(alpha*2)[1], Inf)
}, less= {
c(0, cci(alpha*2)[2])
})
}
attr(cint, "conf.level") <- conf.level
u <- absigma - qperm(0.5, r, m)
sgr <- sigma[u <= 0]
if (length(sgr) == 0) sgr <- NA
else sgr <- max(sgr)
sle <- sigma[u > 0]
if (length(sle) == 0) sle <- NA
else sle <- min(sle)
ESTIMATE <- mean(c(sle, sgr))
}
}
else {
normalize <- function(s, r) {
ss <- sum(r)
N <- m + n
E <- m/N*ss
V <- m*(N-m)/(N^2*(N-1))*(N*sum(r^2) - ss^2)
(s - E)/sqrt(V)
}
p <- pnorm(normalize(STATISTIC, r))
PVAL <- switch(alternative,
two.sided = 2 * min(p, 1 - p),
less = 1 - p,
greater = p)
if(conf.int && !exact) {
alpha <- 1 - conf.level
ab <- function(sig, zq = 0) {
r <- rank(c(x / sig, y))
s <- sum(pmin(r, N -r + 1)[seq(along = x)])
normalize(s, r) - zq
}
## Use uniroot here.
## Compute the range of sigma first.
srangepos <- NULL
srangeneg <- NULL
if (any(x[x > 0]) && any(y[y > 0]))
srangepos <-
c(min(x[x>0], na.rm=TRUE)/max(y[y>0], na.rm=TRUE),
max(x[x>0], na.rm=TRUE)/min(y[y>0], na.rm=TRUE))
if (any(x[x <= 0]) && any(y[y < 0]))
srangeneg <-
c(min(x[x<=0], na.rm=TRUE)/max(y[y<0], na.rm=TRUE),
max(x[x<=0], na.rm=TRUE)/min(y[y<0], na.rm=TRUE))
if (any(is.infinite(c(srangepos, srangeneg)))) {
warning(paste("Cannot compute asymptotic confidence",
"set or estimator"))
conf.int <- FALSE
} else {
ccia <- function(alpha) {
## Check if the statistic exceeds both quantiles
## first.
statu <- ab(srange[1], zq=qnorm(alpha/2))
statl <- ab(srange[2], zq=qnorm(alpha/2, lower.tail=FALSE))
if (statu > 0 || statl < 0) {
warning(paste("Samples differ in location:",
"Cannot compute confidence set,",
"returning NA"))
return(c(NA, NA))
}
u <- uniroot(ab, srange, tol=1e-4,
zq=qnorm(alpha/2))$root
l <- uniroot(ab, srange, tol=1e-4,
zq=qnorm(alpha/2, lower.tail=FALSE))$root
## The process of the statistics does not need to be
## monotone: sort is ok here.
sort(c(u, l))
}
srange <- range(c(srangepos, srangeneg), na.rm=FALSE)
cint <- switch(alternative, two.sided = {
ccia(alpha)
}, greater= {
c(ccia(alpha*2)[1], Inf)
}, less= {
c(0, ccia(alpha*2)[2])
})
attr(cint, "conf.level") <- conf.level
## Check if the statistic exceeds both quantiles first.
statu <- ab(srange[1], zq=0)
statl <- ab(srange[2], zq=0)
if (statu > 0 || statl < 0) {
ESTIMATE <- NA
warning("Cannot compute estimate, returning NA")
} else
ESTIMATE <- uniroot(ab, srange, tol=1e-4, zq=0)$root
}
}
}
names(STATISTIC) <- "AB"
RVAL <- list(statistic = STATISTIC,
p.value = PVAL,
null.value = c("ratio of scales" = 1),
alternative = alternative,
method = "Ansari-Bradley test",
data.name = DNAME)
if(conf.int)
RVAL <- c(RVAL,
list(conf.int = cint,
estimate = c("ratio of scales" = ESTIMATE)))
class(RVAL) <- "htest"
return(RVAL)
}
ansari.exact.formula <-
function(formula, data, subset, na.action, ...)
{
if(missing(formula)
|| (length(formula) != 3)
|| (length(attr(terms(formula[-2]), "term.labels")) != 1)
|| (length(attr(terms(formula[-3]), "term.labels")) != 1))
stop("formula missing or incorrect")
if(missing(na.action))
na.action <- getOption("na.action")
m <- match.call(expand.dots = FALSE)
if(is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data)
m[[1]] <- as.name("model.frame")
m$... <- NULL
mf <- eval(m, parent.frame())
DNAME <- paste(names(mf), collapse = " by ")
names(mf) <- NULL
response <- attr(attr(mf, "terms"), "response")
g <- factor(mf[[-response]])
if(nlevels(g) != 2)
stop("grouping factor must have exactly 2 levels")
DATA <- split(mf[[response]], g)
names(DATA) <- c("x", "y")
y <- do.call("ansari.exact", c(DATA, list(...)))
y$data.name <- DNAME
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.