Nothing
# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate cumulative monthly flow statistics
#'
#' @description Calculate cumulative monthly flow statistics for each month of the year of daily flow values from a daily streamflow
#' data set. Calculates statistics from all values from complete years, unless specified. Defaults to volumetric cumulative flows,
#' can use \code{use_yield} and \code{basin_area} to convert to area-based water yield. Returns a tibble with statistics.
#'
#' @inheritParams calc_annual_cumulative_stats
#' @inheritParams calc_daily_stats
#' @param percentiles Numeric vector of percentiles to calculate. Set to \code{NA} if none required. Default \code{c(5,25,75,95)}.
#' @param months Numeric vector of months to include in analysis. For example, \code{3} for March, \code{6:8} for Jun-Aug or
#' \code{c(10:12,1)} for first four months (Oct-Jan) when \code{water_year_start = 10} (Oct). Default summarizes all
#' months (\code{1:12}). Need to be consecutive months for given year/water year to work properly.
#'
#' @return A tibble data frame with the following columns, default units in cubic metres, or millimetres if use_yield and basin_area provided:
#' \item{Month}{month (MMM-DD) of cumulative statistics}
#' \item{Mean}{monthly mean of all cumulative flows for a given month of the year}
#' \item{Median}{monthly mean of all cumulative flows for a given month of the year}
#' \item{Maximum}{monthly mean of all cumulative flows for a given month of the year}
#' \item{Minimum}{monthly mean of all cumulative flows for a given month of the year}
#' \item{P'n'}{each monthly n-th percentile selected of all cumulative flows for a given month of the year}
#' Default percentile columns:
#' \item{P5}{monthly 5th percentile of all cumulative flows for a given month of the year}
#' \item{P25}{monthly 25th percentile of all cumulative flows for a given month of the year}
#' \item{P75}{monthly 75th percentile of all cumulative flows for a given month of the year}
#' \item{P95}{monthly 95th percentile of all cumulative flows for a given month of the year}
#' Transposing data creates a column of "Statistics" and subsequent columns for each year selected.
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate annual monthly cumulative volume statistics
#' calc_monthly_cumulative_stats(station_number = "08NM116")
#'
#' # Calculate annual monthly cumulative volume statistics with default HYDAT basin area
#' calc_monthly_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE)
#'
#' # Calculate annual monthly cumulative volume statistics with custom basin area
#' calc_monthly_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE,
#' basin_area = 800)
#'
#' }
#' @export
calc_monthly_cumulative_stats <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
percentiles = c(5,25,75,95),
use_yield = FALSE,
basin_area,
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
transpose = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(basin_area)) {
basin_area <- NA
}
numeric_range_checks(percentiles)
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
logical_arg_check(transpose)
months_checks(months)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## SET UP BASIN AREA
## -----------------
if (use_yield){
flow_data <- add_basin_area(flow_data, basin_area = basin_area)
flow_data$Basin_Area_sqkm_temp <- flow_data$Basin_Area_sqkm
}
## PREPARE FLOW DATA
## -----------------
# Fill missing dates, add date variables, and add WaterYear
flow_data <- analysis_prep(data = flow_data,
water_year_start = water_year_start)
# Add cumulative flows
if (use_yield){
flow_data <- suppressWarnings(add_cumulative_yield(data = flow_data,
water_year_start = water_year_start,
basin_area = basin_area,
months = months))
names(flow_data)[names(flow_data) == "Cumul_Yield_mm"] <- paste("Cumul_Total")
} else {
flow_data <- add_cumulative_volume(data = flow_data, water_year_start = water_year_start,
months = months)
names(flow_data)[names(flow_data) == "Cumul_Volume_m3"] <- paste("Cumul_Total")
}
# Filter for the selected and excluded years and leap year values (last day)
flow_data <- dplyr::filter(flow_data, WaterYear >= start_year & WaterYear <= end_year)
flow_data <- dplyr::filter(flow_data, !(WaterYear %in% exclude_years))
flow_data <- dplyr::filter(flow_data, Month %in% months)
# Stop if all data is NA
#no_values_error(flow_data$Cumul_Total)
# if (all(is.na(flow_data$Cumul_Total)))
# stop("No basin_area values provided or extracted from HYDAT. Use basin_area argument to supply one.", call. = FALSE)
# Warning if some of the years contained partial data
comp_years <- dplyr::summarise(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear),
complete_yr = ifelse(sum(!is.na(Value)) == length(WaterYear), TRUE, FALSE))
if (!all(comp_years$complete_yr))
warning("One or more years contained partial data and were excluded. Only years with complete data were used for calculations.", call. = FALSE)
flow_data <- merge(flow_data, comp_years, by = c("STATION_NUMBER", "WaterYear"))
if (all(!flow_data$complete_yr)) {
} else {
flow_data <- dplyr::filter(flow_data, complete_yr == "TRUE")
}
flow_data <- dplyr::select(flow_data, -complete_yr)
# Stop if all data is NA
# no_values_error(flow_data$Cumul_Total)
## CALCULATE STATISTICS
## --------------------
# Calculate monthly totals for all years
monthly_data <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear, MonthName),
Monthly_Total = max(Cumul_Total, na.rm = FALSE))
# Calculate the monthly and longterm stats
monthly_cumul <- dplyr::summarize(dplyr::group_by(monthly_data, STATION_NUMBER, MonthName),
Mean = mean(Monthly_Total, na.rm = FALSE),
Median = stats::median(Monthly_Total, na.rm = FALSE),
Maximum = max(Monthly_Total, na.rm = FALSE),
Minimum = min(Monthly_Total, na.rm = FALSE))
# Compute daily percentiles
if (!all(is.na(percentiles))){
for (ptile in unique(percentiles)) {
monthly_ptile <- dplyr::summarise(dplyr::group_by(monthly_data, STATION_NUMBER, MonthName),
Percentile = ifelse(!is.na(mean(Monthly_Total, na.rm = TRUE)),
stats::quantile(Monthly_Total, ptile / 100, na.rm = TRUE), NA))
names(monthly_ptile)[names(monthly_ptile) == "Percentile"] <- paste0("P", ptile)
# Merge with monthly_cumul
monthly_cumul <- merge(monthly_cumul, monthly_ptile, by = c("STATION_NUMBER", "MonthName"))
}
}
# Rename Month column and reorder to proper levels (set in add_date_vars)
monthly_cumul <- dplyr::rename(monthly_cumul, Month = MonthName)
monthly_cumul <- with(monthly_cumul, monthly_cumul[order(STATION_NUMBER, Month),])
row.names(monthly_cumul) <- seq_len(nrow(monthly_cumul))
# If transpose if selected, switch columns and rows
if (transpose) {
# Get list of columns to order the Statistic column after transposing
stat_levels <- names(monthly_cumul[-(1:2)])
# Transpose the columns for rows
monthly_cumul <- tidyr::gather(monthly_cumul, Statistic, Value, -STATION_NUMBER, -Month)
monthly_cumul <- tidyr::spread(monthly_cumul, Month, Value)
# Order the columns
monthly_cumul$Statistic <- factor(monthly_cumul$Statistic, levels = stat_levels)
monthly_cumul <- dplyr::arrange(monthly_cumul, STATION_NUMBER, Statistic)
}
# Recheck if station_number was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(monthly_cumul)[names(monthly_cumul) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
monthly_cumul <- dplyr::select(monthly_cumul, -STATION_NUMBER)
}
dplyr::as_tibble(monthly_cumul)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.