plot.pca.fd | R Documentation |
Display the types of variation across a sample of functions. Label with the eigenvalues that indicate the relative importance of each mode of variation.
## S3 method for class 'pca.fd'
plot(x, nx = 128, pointplot = TRUE, harm = 0,
expand = 0, cycle = FALSE, ...)
x |
a functional data object. |
nx |
Number of points to plot or vector (if length > 1) to use as
|
pointplot |
logical: If TRUE, the harmonics / principal components are plotted as '+' and '-'. Otherwise lines are used. |
harm |
Harmonics / principal components to plot. If 0, plot all. If length(harm) > sum(par("mfrow")), the user advised, "Waiting to confirm page change..." and / or 'Click or hit ENTER for next page' for each page after the first. |
expand |
nonnegative real: If expand == 0 then effect of +/- 2 standard deviations of each pc are given otherwise the factor expand is used. |
cycle |
logical: If cycle=TRUE and there are 2 variables then a cycle plot will be drawn If the number of variables is anything else, cycle will be ignored. |
... |
other arguments for 'plot'. |
Produces one plot for each principal component / harmonic to be plotted.
invisible(NULL)
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
cca.fd
,
pda.fd
plot.pca.fd
oldpar <- par(no.readonly=TRUE)
# carry out a PCA of temperature
# penalize harmonic acceleration, use varimax rotation
daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)
harmaccelLfd <- vec2Lfd(c(0,(2*pi/365)^2,0), c(0, 365))
harmfdPar <- fdPar(fd(matrix(0,65,1), daybasis65), harmaccelLfd, lambda=1e5)
daytempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],
daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd
daytemppcaobj <- pca.fd(daytempfd, nharm=4, harmfdPar)
# plot harmonics, asking before each new page after the first:
plot.pca.fd(daytemppcaobj)
# plot 4 on 1 page
par(mfrow=c(2,2))
plot.pca.fd(daytemppcaobj, cex.main=0.9)
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.