sd.fd | R Documentation |
Evaluate the standard deviation of a set of functions in a functional data object.
sd.fd(fdobj)
std.fd(fdobj)
stdev.fd(fdobj)
stddev.fd(fdobj)
fdobj |
a functional data object. |
The multiple aliases are provided for compatibility with previous versions and with other languages. The name for the standard deviation function in R is 'sd'. Matlab uses 'std'. S-Plus and Microsoft Excal use 'stdev'. 'stddev' was used in a previous version of the 'fda' package and is retained for compatibility.
a functional data object with a single replication
that contains the standard deviation of the one or several functions in
the object fdobj
.
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
mean.fd
,
sum.fd
,
center.fd
liptime <- seq(0,1,.02)
liprange <- c(0,1)
# ------------- create the fd object -----------------
# use 31 order 6 splines so we can look at acceleration
nbasis <- 51
norder <- 6
lipbasis <- create.bspline.basis(liprange, nbasis, norder)
lipbasis <- create.bspline.basis(liprange, nbasis, norder)
# ------------ apply some light smoothing to this object -------
Lfdobj <- int2Lfd(4)
lambda <- 1e-12
lipfdPar <- fdPar(fd(matrix(0,nbasis,1), lipbasis), Lfdobj, lambda)
lipfd <- smooth.basis(liptime, lip, lipfdPar)$fd
names(lipfd$fdnames) = c("Normalized time", "Replications", "mm")
lipstdfd <- sd.fd(lipfd)
oldpar <- par(no.readonly=TRUE)
plot(lipstdfd)
par(oldpar)
all.equal(lipstdfd, std.fd(lipfd))
all.equal(lipstdfd, stdev.fd(lipfd))
all.equal(lipstdfd, stddev.fd(lipfd))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.