Nothing
## ff_scoringhistory (Template) ##
#' Get a dataframe of scoring history, utilizing the ff_scoring and load_player_stats functions.
#'
#' @param conn a conn object created by `ff_connect()`
#' @param season season a numeric vector of seasons (earliest available year is 1999)
#' @param ... other arguments
#'
#' @examples
#' \donttest{
#' try({ # try only shown here because sometimes CRAN checks are weird
#' template_conn <- ff_template(scoring_type = "sfb11", roster_type = "sfb11")
#' ff_scoringhistory(template_conn, season = 2020)
#' }) # end try
#' }
#'
#' @describeIn ff_scoringhistory template: returns scoring history in a flat table, one row per player per week.
#'
#' @export
ff_scoringhistory.template_conn <- function(conn, season = 1999:nflreadr::most_recent_season(), ...) {
checkmate::assert_numeric(season, lower = 1999, upper = as.integer(format(Sys.Date(), "%Y")))
# Pull in scoring rules for that league
league_rules <-
ff_scoring(conn) %>%
tidyr::separate(
col = "range",
into = c("lower_range", "upper_range"),
sep = "-(?=[0-9]*$)"
) %>%
dplyr::mutate(dplyr::across(
.cols = c("lower_range", "upper_range"),
.fns = as.numeric
)) %>%
dplyr::left_join(
ffscrapr::nflfastr_stat_mapping %>% dplyr::filter(.data$platform == "mfl"),
by = c("event" = "ff_event")
) %>%
dplyr::select(
"pos", "points", "lower_range", "upper_range", "event", "points_type", "nflfastr_event", "short_desc"
)
ros <- .nflfastr_roster(season)
ps <- .nflfastr_offense_long(season)
if("PK" %in% league_rules$pos){
ps <- dplyr::bind_rows(
ps,
.nflfastr_kicking_long(season))
}
fastr_weekly <- ros %>%
dplyr::inner_join(ps, by = c("gsis_id"="player_id","season")) %>%
dplyr::inner_join(league_rules, by = c("metric"="nflfastr_event","pos")) %>%
dplyr::filter(.data$value >= .data$lower_range, .data$value <= .data$upper_range) %>%
dplyr::mutate(
value = dplyr::case_when(.data$points_type == "once" ~ 1, TRUE ~ .data$value),
points = .data$value * .data$points
) %>%
dplyr::group_by(.data$season, .data$week, .data$gsis_id, .data$sportradar_id) %>%
dplyr::mutate(points = round(sum(.data$points, na.rm = TRUE), 2)) %>%
dplyr::ungroup() %>%
tidyr::pivot_wider(
id_cols = c("season", "week", "gsis_id", "sportradar_id",
"mfl_id", "player_name", "pos", "team", "points"),
names_from = "metric",
values_from = "value",
values_fill = 0,
values_fn = max
)
return(fastr_weekly)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.