R/gofstat.R

Defines functions print.gofstat.fitdistcens print.gofstat.fitdist computegofstatChi2 computegofstatKSCvMAD

Documented in print.gofstat.fitdist print.gofstat.fitdistcens

#############################################################################
#   Copyright (c) 2009 Marie Laure Delignette-Muller, Christophe Dutang                                                                                                  
#                                                                                                                                                                        
#   This program is free software; you can redistribute it and/or modify                                               
#   it under the terms of the GNU General Public License as published by                                         
#   the Free Software Foundation; either version 2 of the License, or                                                   
#   (at your option) any later version.                                                                                                            
#                                                                                                                                                                         
#   This program is distributed in the hope that it will be useful,                                                             
#   but WITHOUT ANY WARRANTY; without even the implied warranty of                                          
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 
#   GNU General Public License for more details.                                                                                    
#                                                                                                                                                                         
#   You should have received a copy of the GNU General Public License                                           
#   along with this program; if not, write to the                                                                                           
#   Free Software Foundation, Inc.,                                                                                                              
#   59 Temple Place, Suite 330, Boston, MA 02111-1307, USA                                                             
#                                                                                                                                                                         
#############################################################################
### calculate goodness-of-fit statistics for 
### fit of a parametric distribution on non-censored data
###
###         R functions
### 

gofstat <- function (f, chisqbreaks, meancount, discrete, 
                     fitnames=NULL) 
{
  # Check of the first argument
  if(inherits(f, "fitdist"))
  {
    type <- "fitdist"
    f <- list(f)
  }else if(inherits(f, "fitdistcens"))
  {
    type <- "fitdistcens"
    f <- list(f)
  }else if(length(f) == 1 & !inherits(f, "fitdist") & !inherits(f, "fitdistcens"))
  {
    stop("argument f must a 'fitdist' or 'fitdistcens' object or a list of 'fitdist' or 'fitdistcens' objects.")
  }else if(!is.list(f))
  {
    stop("argument f must be a list of 'fitdist' or 'fitdistcens' objects")
  }else if (inherits(f[[1]], "fitdist"))
  {
    type <- "fitdist"  
    if(any(sapply(f, function(x) !inherits(x, "fitdist"))))        
      stop("argument f must be a list of 'fitdist' or 'fitdistcens' objects") 
  } else if (inherits(f[[1]], "fitdistcens"))
  {
    type <- "fitdistcens"  
    if(any(sapply(f, function(x) !inherits(x, "fitdistcens"))))        
      stop("argument f must be a list of 'fitdist' or 'fitdistcens' objects") 
  } else
  {
    stop("argument f must a 'fitdist' or 'fitdistcens' object or a list of 'fitdist' or 'fitdistcens' objects.")
  }
  
  # In the future developments, it will be necessary to check that all the fits share the same weights
  if(!is.null(f[[1]]$weights))
    stop("gofstat is not yet available when using weights")
  
  ############# for uncensored data ########################
  if (type == "fitdist") 
  {
    odata <- f[[1]]$data
    sdata <- sort(odata)
    n <- f[[1]]$n
    distname <- f[[1]]$distname
    pdistname <- paste("p", distname, sep="")
    estimate <- f[[1]]$estimate
    fix.arg <- f[[1]]$fix.arg
    
    verif.ftidata <- function(fti)
    {
      if (any(fti$data != odata))
        stop("All compared fits must have been obtained with the same dataset")
      invisible()
    }
    lapply(f, verif.ftidata)	
    
    
    # initiate discrete if not given 
    if(missing(discrete))
    {
      discrete <- f[[1]]$discrete
    }
    if(!is.logical(discrete))
      stop("wrong argument 'discrete'.")
    
    #define chisqbreaks if not defined
    if (missing(chisqbreaks)) 
    { 
      if (missing(meancount))
        meancount <- round( n / ((4*n)^(2/5)) )
      if (length(sdata)>ceiling(1.5*meancount)) 
      {
        limit <- sdata[meancount]
        sdata <- sdata[sdata>limit]
        chisqbreaks <- limit
      }else 
      {
        warnings("The sample is too small to automatically define chisqbreaks")
        chisq <- NULL
        chisqbreaks <- NULL
        chisqpvalue <- NULL
        chisqtable <- NULL
        chisqdf <- NULL
        
      }
      while (length(sdata)>ceiling(1.5*meancount)) 
      {
        limit <- sdata[meancount]
        sdata <- sdata[sdata>limit]
        chisqbreaks <- c(chisqbreaks,limit)
      } 
      sdata <- sort(odata)
    }
    
    nbfit <- length(f)
    
    if(is.null(fitnames))
      fitnames <- paste(1:nbfit, sapply(f, function(x) x$method), 
                        sapply(f, function(x) x$distname), sep="-")
    else
      fitnames <- rep(fitnames, length.out=nbfit)
    
    Chi2 <- computegofstatChi2(sdata, n, distname, pdistname, estimate, fix.arg, 
                               chisqbreaks)
    if(length(f) > 1)
    {
      #renaming
      names(Chi2$chisq) <- names(Chi2$chisqpvalue) <- names(Chi2$chisqdf) <- fitnames[1]
      colnames(Chi2$chisqtable)[2] <- paste("theo", fitnames[1], sep=" ")
      
      #computation and storing
      for(i in 2:nbfit)
      {
        Chi2temp <- computegofstatChi2(sdata, n, f[[i]]$distname, paste("p", f[[i]]$distname, sep=""), 
                                       f[[i]]$estimate, f[[i]]$fix.arg, chisqbreaks)
        
        names(Chi2temp$chisq) <- names(Chi2temp$chisqpvalue) <- names(Chi2temp$chisqdf) <- fitnames[i]
        Chi2$chisq <- c(Chi2$chisq, Chi2temp$chisq)
        Chi2$chisqpvalue <- c(Chi2$chisqpvalue, Chi2temp$chisqpvalue)
        Chi2$chisqdf <- c(Chi2$chisqdf, Chi2temp$chisqdf)
        
        Chi2$chisqtable <- cbind(Chi2$chisqtable, Chi2temp$chisqtable[,2])
        colnames(Chi2$chisqtable)[NCOL(Chi2$chisqtable)] <- paste("theo", fitnames[i], sep=" ")
      }
    }
    
    if(discrete)
    {	
      addres <- Chi2
      
    }else
    {
      KSCvMAD <- computegofstatKSCvMAD(sdata, n, distname, pdistname, estimate, 
                                       fix.arg, f[[1]]$method)
      #renaming
      names(KSCvMAD$cvm) <- names(KSCvMAD$ad) <- names(KSCvMAD$ks) <- fitnames[1]
      
      if(!is.null(KSCvMAD$cvmtest))
        names(KSCvMAD$cvmtest) <- names(KSCvMAD$adtest) <- names(KSCvMAD$kstest) <- fitnames[1]
      
      if(length(f) > 1)
      {			
        #computation and storing
        for(i in 2:nbfit)
        {
          KSCvMADtemp <- computegofstatKSCvMAD(sdata, n, f[[i]]$distname, paste("p", f[[i]]$distname, sep=""), 
                                               f[[i]]$estimate, f[[i]]$fix.arg, f[[i]]$method)
          
          names(KSCvMADtemp$cvm) <- names(KSCvMADtemp$ad) <- names(KSCvMADtemp$ks) <- fitnames[i]
          
          if(!is.null(KSCvMADtemp$cvmtest))
            names(KSCvMADtemp$cvmtest) <- names(KSCvMADtemp$adtest) <- names(KSCvMADtemp$kstest) <- fitnames[i]
          
          KSCvMAD$cvm <- c(KSCvMAD$cvm, KSCvMADtemp$cvm)
          KSCvMAD$cvmtest <- c(KSCvMAD$cvmtest, KSCvMADtemp$cvmtest)
          KSCvMAD$ad <- c(KSCvMAD$ad, KSCvMADtemp$ad)
          KSCvMAD$adtest <- c(KSCvMAD$adtest, KSCvMADtemp$adtest)
          KSCvMAD$ks <- c(KSCvMAD$ks, KSCvMADtemp$ks)
          KSCvMAD$kstest <- c(KSCvMAD$kstest, KSCvMADtemp$kstest)
          
        }
      }
      
      addres <- c(Chi2, KSCvMAD)
    }
    
    aics <- sapply(f, function(x) x$aic)
    names(aics) <- fitnames
    bics <- sapply(f, function(x) x$bic)
    names(bics) <- fitnames
    
    res <- c(addres, aic=list(aics), bic=list(bics), discrete=discrete, nbfit=nbfit)
    class(res) <- c("gofstat.fitdist", "fitdist")
    res
    
  } else # so if if type == "fitdistcens"
    ############# for censored data ########################
  {
    censdata <- f[[1]]$censdata
    
    verif.ftidata <- function(fti)
    {
      if (any(!identical(fti$censdata, censdata)))
        stop("All compared fits must have been obtained with the same dataset")
      invisible()
    }
    lapply(f, verif.ftidata)	
    
    # check discrete 
    if(!missing(discrete))
    {
      if(!is.logical(discrete))
      {
        stop("wrong argument 'discrete'.")
      } else if (discrete)
      {
        warning("Censored data cannot be considered as discrete data")
      }
    }
    
    # warning about absence of chisq
    if (!missing(chisqbreaks) | !missing(meancount)) 
    { 
      warning("The chi-squared statistic is not calculated for fits using censored data")
    }
    
    nbfit <- length(f)
    
    if(is.null(fitnames))
      fitnames <- paste(1:nbfit, sapply(f, function(x) x$method), 
                        sapply(f, function(x) x$distname), sep="-")
    else
      fitnames <- rep(fitnames, length.out=nbfit)
    
    aics <- sapply(f, function(x) x$aic)
    names(aics) <- fitnames
    bics <- sapply(f, function(x) x$bic)
    names(bics) <- fitnames
    
    res <- c(aic=list(aics), bic=list(bics), nbfit=nbfit)
    class(res) <- c("gofstat.fitdistcens", "fitdistcens")
    res
  }
}


#----------------------------------------------------------------------
#KS, CvM, AD statistics : only for continuous distributions
computegofstatKSCvMAD <- function(sdata, n, distname, pdistname, estimate, 
                                  fix.arg, method)
{
  obspu <- seq(1,n)/n
  obspl <- seq(0,n-1)/n
  theop <- do.call(pdistname, c(list(sdata), as.list(estimate), fix.arg))
  
  # Kolmogorov-Smirnov statistic
  ks <- max(pmax(abs(theop-obspu), abs(theop-obspl)))
  Dmod <- ks*(sqrt(n)+0.12+0.11/sqrt(n))
  # Kolmogorov-Smirnov test
  if (n>=30)
    kstest <- ifelse(Dmod>1.358,"rejected","not rejected")
  else
    kstest <- "not computed"
  
  # Anderson-Darling statistic
  ad <- - n - mean( (2 * 1:n - 1) * (log(theop) + log(1 - rev(theop))) ) 
  # ad <-  -n-sum((2*(1:n)-1)*log(theop) + (2*n+1-2*(1:n))*log(1-theop))/n 
  
  # Anderson-Darling test        
  if (is.null(fix.arg) & method == "mle")
  {
    # the following test does not correspond to MLE estimate but to unbiased 
    # estimate of the variance
    #if ((distname == "norm" | distname == "lnorm") & n>=5) {
    #  a2mod <- ad*(1+0.75/n+2.25/n^2)
    #  adtest <- ifelse(a2mod>0.752,"rejected","not rejected")
    #} 
    #else
    if (distname == "exp" & n>=5) 
    {
      a2mod <- ad*(1+0.6/n)
      adtest <- ifelse(a2mod>1.321, "rejected", "not rejected")
    }else if (distname == "gamma" & n>=5) 
    {
      m <- as.list(estimate)$shape
      interp <- approxfun(c(1,2,3,4,5,6,8,10,12,15,20),
                          c(0.786,0.768,0.762,0.759,0.758,0.757,0.755,0.754,0.754,0.754,0.753),
                          yright=0.752)
      adtest <- ifelse(ad>interp(m), "rejected", "not rejected")
    }else if (distname == "weibull" & n>=5) 
    {
      a2mod <- ad*(1+0.2/sqrt(n))
      adtest <- ifelse(a2mod>0.757, "rejected", "not rejected")
    }else if (distname == "logis" & n>=5) 
    {
      a2mod <- ad*(1+0.25/n)
      adtest <- ifelse(a2mod>0.66,"rejected","not rejected")
    }else adtest <- "not computed"
  }else # if (is.null(fix.arg)...)
    adtest <- "not computed"
  
  # Cramer-von Mises statistic
  cvm <- 1/(12*n) + sum( ( theop - (2 * 1:n - 1)/(2 * n) )^2 )
  
  # Cramer-von Mises test
  if (is.null(fix.arg) & method == "mle")
  {
    # the following test does not correspond to MLE estimate but to unbiased 
    # estimate of the variance
    # if ((distname == "norm" | distname == "lnorm") & n>=5) {
    #  w2mod <- cvm*(1+0.5/n)
    #  cvmtest <- ifelse(w2mod>0.126,"rejected","not rejected")
    # } 
    # else
    if (distname == "exp" & n>=5) 
    {
      w2mod <- cvm*(1+0.16/n)
      cvmtest <- ifelse(w2mod>0.222,"rejected","not rejected")
    }else if (distname == "gamma" & n>=5) 
    {
      m <- as.list(estimate)$shape
      interp <- approxfun(c(1,2,3,4,5,6,8,10,12,15,20),
                          c(0.136,0.131,0.129,0.128,0.128,0.128,0.127,0.127,0.127,0.127,0.126),
                          yright=0.126)
      cvmtest <- ifelse(cvm>interp(m),"rejected","not rejected")
    }else if (distname == "weibull" & n>=5) 
    {
      w2mod <- cvm*(1+0.2/sqrt(n))
      cvmtest <- ifelse(w2mod>0.124,"rejected","not rejected")
    }else if (distname == "logis" & n>=5) 
    {
      w2mod <- (n*cvm - 0.08)/(n - 1)
      cvmtest <- ifelse(w2mod>0.098,"rejected","not rejected")
    }else cvmtest <- "not computed"
  } else # if (is.null(fix.arg))
    cvmtest <- "not computed"
  
  if (length(table(sdata)) != length(sdata))
    warnings("Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling statistics may not be correct with ties")
  
  list(cvm = cvm, cvmtest = cvmtest, ad = ad,adtest = adtest, ks = ks, kstest=kstest)
}


#----------------------------------------------------------------------
#chi-squared statistic : both for continuous and discrete distributions
computegofstatChi2 <- function(sdata, n, distname, pdistname, estimate, fix.arg, chisqbreaks)
{
  # chi-squared statistic and pvalues
  if (!is.null(chisqbreaks)) 
  {
    if(!is.numeric(chisqbreaks))
      stop("chisqbreaks must be a numeric vector defining the cell boundaries")
    
    nbreaks <- length(chisqbreaks)  
    pbreaks <- do.call(pdistname, c(list(chisqbreaks), as.list(estimate), fix.arg))
    Fobsbreaks <- ecdf(sdata)(chisqbreaks)
    
    Fobsunder <- c(0, Fobsbreaks[1:nbreaks-1]) 
    punder <- c(0, pbreaks[1:nbreaks-1])
    if (pbreaks[nbreaks]==1 & Fobsbreaks[nbreaks]==1) 
    {
      p <- pbreaks-punder
      Fobs <- Fobsbreaks-Fobsunder
    }else 
    {
      p <- c(pbreaks-punder, 1-pbreaks[nbreaks])
      Fobs <- c(Fobsbreaks-Fobsunder, 1-Fobsbreaks[nbreaks])            
    }
    
    obscounts <- round(Fobs*n)
    theocounts <- p*n
    chisq <- sum(((obscounts-theocounts)^2)/theocounts)
    chisqdf <- length(obscounts)-1-length(estimate)
    
    # replacing of the line below which causes an error message for chisqdf <=0
    #		chisqpvalue <- ifelse(chisqdf>0, pchisq(chisq, df=chisqdf, lower.tail=FALSE), NULL)
    if (chisqdf>0)
    {
      chisqpvalue <- pchisq(chisq, df=chisqdf, lower.tail=FALSE) 
    } else
    {
      chisqpvalue <- NULL
    }
    
    chisqtable <- as.table(cbind(obscounts, theocounts))
    for (i in 1:length(obscounts)-1)
      rownames(chisqtable)[i] <- paste("<=", signif(chisqbreaks[i], digits=4))
    rownames(chisqtable)[length(obscounts)] <- paste(">", signif(chisqbreaks[i], digits=4))
    
    return( list(chisq = chisq, chisqbreaks=chisqbreaks, chisqpvalue = chisqpvalue,
                 chisqdf = chisqdf, chisqtable = chisqtable) )
  }else
    return(NULL)
}


print.gofstat.fitdist <- function(x, ...)
{
  if (!inherits(x, "gofstat.fitdist"))
    stop("Use only with 'gofstat.fitdist' objects")
  
  if (x$discrete) #discrete distribution
  {
    if(!is.null(x$chisq)) 
    {
      cat("Chi-squared statistic: ",x$chisq,"\n")
      cat("Degree of freedom of the Chi-squared distribution: ",x$chisqdf,"\n")
      if (any(x$chisqdf <= 0))
      {
        cat("  The degree of freedom of the chi-squared distribution is less than 1  \n") 
        cat("  The number of cells is insufficient to calculate the p-value.  \n") 
      }else
      { 
        cat("Chi-squared p-value: ",x$chisqpvalue,"\n")
        if (any(x$chisqtable[,-1] < 5)) 
          cat("   the p-value may be wrong with some theoretical counts < 5  \n")
      }
      
      cat("Chi-squared table:\n")
      print(x$chisqtable)	
      
      cat("\nGoodness-of-fit criteria\n")
      mm <- rbind(AIC=x$aic, BIC=x$bic)
      rownames(mm) <- c("Akaike's Information Criterion",
                        "Bayesian Information Criterion")
      print(mm)
    }else 
      cat("The sample is too small to automatically define cells for Chi-squared test \n")
  }else # continuous distribution
  { 
    cat("Goodness-of-fit statistics\n")
    mm <- rbind(KS=x$ks, CvM=x$cvm, AD=x$ad)
    rownames(mm) <- c("Kolmogorov-Smirnov statistic", "Cramer-von Mises statistic",
                      "Anderson-Darling statistic")
    print(mm)
    cat("\nGoodness-of-fit criteria\n")
    mm <- rbind(AIC=x$aic, BIC=x$bic)
    rownames(mm) <- c("Akaike's Information Criterion",
                      "Bayesian Information Criterion")
    print(mm)
  }
  
  invisible(x)
}

print.gofstat.fitdistcens <- function(x, ...)
{
  if (!inherits(x, "gofstat.fitdistcens"))
    stop("Use only with 'gofstat.fitdistcens' objects")
  
  cat("\nGoodness-of-fit criteria\n")
  mm <- rbind(AIC=x$aic, BIC=x$bic)
  rownames(mm) <- c("Akaike's Information Criterion",
                    "Bayesian Information Criterion")
  print(mm)
  invisible(x)
}

Try the fitdistrplus package in your browser

Any scripts or data that you put into this service are public.

fitdistrplus documentation built on Sept. 11, 2024, 7:08 p.m.