Nothing
# require(parallel)
# created Thusday 7-4-2015
# author: Mikis Stasinopoulos
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
drop1All <- function (object,
scope,
test = c("Chisq", "none"),
k = 2,
sorted = FALSE,
trace = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = 1L,
cl = NULL,
...)
{
#-----------------------
drop1.scope<-function (terms1, terms2)
{
terms1 <- terms(terms1, "mu")
f2 <- if (missing(terms2))
numeric(0)
else attr(terms(terms2, "mu"), "factor")
factor.scope(attr(terms1, "factor"), list(drop = f2))$drop
}
#-----------------------------------------------------------------------------
safe_pchisq <- function (q, df, ...)
{
df[df <= 0] <- NA
pchisq(q = q, df = df, ...)
}
#-------------------------------------------------------------------------------
# main functions starts here
#-------------------------------------------------------------------------------
#if (!what %in% object$par)
# stop(paste(what, "is not a parameter in the object", "\n"))
tl <- attr(terms(object, "mu"), "term.labels")
if (missing(scope))
{scope <- drop1.scope(object)}
else
{
if (!is.character(scope))
scope <- attr(terms(update.formula(formula(object, "mu"), scope), "mu"),
"term.labels")
if (!all(match(scope, tl, FALSE)))
stop("scope is not a subset of term labels")
}
ns <- length(scope)
ans <- matrix(nrow = ns + 1, ncol = 2, dimnames = list(c("<none>",
scope), c("df", "AIC")))
ans[1, ] <- extractAIC(object, scale, k = k, ...)
#-------------------------------------------------------------------------------
#--------------- PARALLEL-------------------------------------------------------
#----------------SET UP PART----------------------------------------------------
if (missing(parallel))
parallel <- "no"
parallel <- match.arg(parallel)
have_mc <- have_snow <- FALSE
if (parallel != "no" && ncpus > 1L)
{
if (parallel == "multicore")
have_mc <- .Platform$OS.type != "windows"
else if (parallel == "snow")
have_snow <- TRUE
if (!have_mc && !have_snow)
ncpus <- 1L
loadNamespace("parallel")
}
# -------------- finish parallel------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# function for parallel apply
fn <- function(term)
{
if (trace)
cat("trying -", term, "\n")
nfit <- update(object, as.formula(paste("~ . -", term)), what="All", evaluate = FALSE, trace=FALSE)
nfit <- try(eval.parent(nfit), silent=TRUE)
if (any(class(nfit)%in%"try-error"))
{
cat("Model with term ", term, "has failed \n")
NA# extractAIC(object, scale, k = k, ...)
}
else extractAIC(nfit, scale, k = k, ...)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# -------- parallel -----------------------------------------------------------
# for (i in seq(ns))
# {
# tt <- scope[i]
# if (trace)
# cat("trying -", tt, "\n")
# nfit <- update(object, as.formula(paste("~ . -", tt)), what="All", evaluate = FALSE, #trace=FALSE)
# nfit <- eval.parent(nfit)
# nfit <- try(eval.parent(nfit), silent=TRUE)
# if (any(class(nfit)%in%"try-error"))
# {
# cat("Model with term ", tt, "has failed \n")
# ans[i + 1, ] <- NA# extractAIC(object, scale, k = k, ...)
# }
# else ans[i + 1, ] <- extractAIC(nfit, scale, k = k, ...)
# }
#-------------------------------------------------------------------------------------
ans[-1,] <- if (ncpus > 1L && (have_mc || have_snow))
{
if (have_mc)
{# sapply(scope, fn)
matrix(unlist(parallel::mclapply(scope, fn, mc.cores = ncpus)), ncol=2,
byrow = T)
}
else if (have_snow)
{
list(...)
if (is.null(cl))
{
# make the cluster
# cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))
cl <- parallel::makeForkCluster(ncpus)
if (RNGkind()[1L] == "L'Ecuyer-CMRG")
parallel::clusterSetRNGStream(cl)
res <- t(parallel::parSapply(cl, scope, fn))
parallel::stopCluster(cl)
res
}
else t(parallel::parSapply(cl, scope, fn))
}
} # end parallel ----------------------------------------------------------
else t(sapply(scope, fn))
dfs <- ans[1, 1] - ans[, 1]
dfs[1] <- NA
aod <- data.frame(Df = dfs, AIC = ans[, 2])
o <- if (sorted)
order(aod$AIC)
else seq(along = aod$AIC)
test <- match.arg(test)
if (test == "Chisq")
{
dev <- ans[, 2] - k * ans[, 1]
dev <- dev - dev[1]
dev[1] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
}
aod <- aod[o, ]
head <- c("Single term deletions", "\nModel:", deparse(as.vector(formula(object))))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# addterm
add1All <- function (object,
scope,
test = c("Chisq", "none" ),
k = 2,
sorted = FALSE,
trace = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = 1L,
cl = NULL,
...)
{
#-------------------------------------------------------------------------------
add.scope <- function (terms1, terms2 )
{
terms1 <- terms(terms1)
terms2 <- terms(terms2)
factor.scope(attr(terms1, "factor"), list(add = attr(terms2, "factor")))$add
}
#------------------------------------------------------------------------------
#-----------------------------------------------------------------------------
safe_pchisq <- function (q, df, ...)
{
df[df <= 0] <- NA
pchisq(q = q, df = df, ...)
}
#-----------------------------------------------------------------------------
if (missing(scope) || is.null(scope))
stop("no terms in scope")
if (!is.character(scope))
scope <- add.scope(object, terms(update.formula(formula(object, "mu"), scope)))
if (!length(scope))
stop("no terms in scope for adding to object")
ns <- length(scope)
ans <- matrix(nrow = ns + 1, ncol = 2, dimnames = list(c("<none>",
scope), c("df", "AIC")))
ans[1, ] <- extractAIC(object, scale, k = k, ...)
#--------------- PARALLEL-------------------------------------------------------
#----------------PART-----------------------------------------------------------
if (missing(parallel))
parallel <- "no"
parallel <- match.arg(parallel)
have_mc <- have_snow <- FALSE
if (parallel != "no" && ncpus > 1L)
{
if (parallel == "multicore")
have_mc <- .Platform$OS.type != "windows"
else if (parallel == "snow")
have_snow <- TRUE
if (!have_mc && !have_snow)
ncpus <- 1L
loadNamespace("parallel")
}
# -------------- finish parallel------------------------------------------------
#-------------------------------------------------------------------------------
# function for parallel apply
fn <- function(term)
{
if (trace)
cat("trying -", term, "\n")
nfit <- update(object, as.formula(paste("~ . +", term)), what="All", trace=FALSE, evaluate = FALSE)
nfit <- try(eval.parent(nfit), silent=TRUE)
if (any(class(nfit)%in%"try-error"))
{
cat("Model with term ", term, "has failed \n")
NA# extractAIC(object, scale, k = k, ...)
}
else extractAIC(nfit, scale, k = k, ...)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# -------- parallel -----------------------------------------------------------
ans[-1,] <- if (ncpus > 1L && (have_mc || have_snow))
{
if (have_mc)
{# sapply(scope, fn)
matrix(unlist(parallel::mclapply(scope, fn, mc.cores = ncpus)), ncol=2,
byrow = T)
}
else if (have_snow)
{
list(...)
if (is.null(cl))
{
# make the cluster
# cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))
cl <- parallel::makeForkCluster(ncpus)
if (RNGkind()[1L] == "L'Ecuyer-CMRG")
parallel::clusterSetRNGStream(cl)
res <- t(parallel::parSapply(cl, scope, fn))
parallel::stopCluster(cl)
res
}
else t(parallel::parSapply(cl, scope, fn))
}
} # end parallel ----------------------------------------------------------
else t(sapply(scope, fn))
# for (i in seq(ns))
# {
# tt <- scope[i]
# if (trace)
# cat("trying +", tt, "\n")
# nfit <- update(object, as.formula(paste("~ . +", tt)), what="All", trace=FALSE, evaluate = FALSE)
# nfit <- try(eval.parent(nfit), silent=TRUE)
# if (any(class(nfit)%in%"try-error"))
# {
# cat("Model with term ", tt, "has failed \n")
# ans[i + 1, ] <- NA# extractAIC(object, scale, k = k, ...)
# }
# else ans[i + 1, ] <- extractAIC(nfit, scale, k = k, ...)
# }
dfs <- ans[, 1] - ans[1, 1]
dfs[1] <- NA
aod <- data.frame(Df = dfs, AIC = ans[, 2])
o <- if (sorted)
order(aod$AIC)
else seq(along = aod$AIC)
test <- match.arg(test)
if (test == "Chisq")
{
dev <- ans[, 2] - k * ans[, 1]
dev <- dev[1] - dev
dev[1] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
}
aod <- aod[o, ]
head <- c("Single term additions for", "\nModel:", deparse(as.vector(formula(object))))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
#----------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------
# Venable and Ripley modification of the stepAIC function
#----------------------------------------------------------------------------------------
stepGAICAll.B <-function(object,
scope,
direction = c("both", "backward", "forward"),
trace = T,
keep = NULL,
steps = 1000,
scale = 0,
k = 2,
parallel = c("no", "multicore", "snow"),
ncpus = 1L,
cl = NULL,
...)
{
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
mydeviance <- function(x, ...)
{
dev <- deviance(x)
if (!is.null(dev))
dev
else extractAIC(x, k = 0)[2]
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
cut.string <- function(string)
{
if (length(string) > 1)
string[-1] <- paste("\n", string[-1], sep = "")
string
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
re.arrange <- function(keep)
{
namr <- names(k1 <- keep[[1]])
namc <- names(keep)
nc <- length(keep)
nr <- length(k1)
array(unlist(keep, recursive = FALSE), c(nr, nc), list(namr,
namc))
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
step.results <- function(models, fit, object, usingCp = FALSE) #
{
change <- sapply(models, "[[", "change")
rd <- sapply(models, "[[", "deviance")
dd <- c(NA, abs(diff(rd)))
rdf <- sapply(models, "[[", "df.resid")
ddf <- c(NA, abs(diff(rdf)))
AIC <- sapply(models, "[[", "AIC")
heading <- c("Stepwise Model Path \nAnalysis of Deviance Table",
"\nInitial Model:", deparse(as.vector(formula(object))),
"\nFinal Model:", deparse(as.vector(formula(fit))),
"\n")
aod <- if (usingCp)
data.frame(Step = change, Df = ddf, Deviance = dd,
"Resid. Df" = rdf, "Resid. Dev" = rd, Cp = AIC,
check.names = FALSE)
else data.frame(Step = change, Df = ddf, Deviance = dd,
"Resid. Df" = rdf, "Resid. Dev" = rd, AIC = AIC,
check.names = FALSE)
attr(aod, "heading") <- heading
class(aod) <- c("Anova", "data.frame")
fit$anova <- aod
fit
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
droptermAllP <- function (object,
scope,
test = c("Chisq", "none"),
k = 2,
sorted = FALSE,
trace = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = 1L,
cl = NULL,
...)
{
#-----------------------
drop1.scope<-function (terms1, terms2)
{
terms1 <- terms(terms1, "mu")
f2 <- if (missing(terms2))
numeric(0)
else attr(terms(terms2, "mu"), "factor")
factor.scope(attr(terms1, "factor"), list(drop = f2))$drop
}
#-----------------------------------------------------------------------------
safe_pchisq <- function (q, df, ...)
{
df[df <= 0] <- NA
pchisq(q = q, df = df, ...)
}
#-------------------------------------------------------------------------------
# main function droptermAllP starts here
#-------------------------------------------------------------------------------
tl <- attr(terms(object, "mu"), "term.labels")
if (missing(scope))
{scope <- drop1.scope(object)}
else
{
if (!is.character(scope))
scope <- attr(terms(update.formula(formula(object, "mu"), scope), "mu"),
"term.labels")
if (!all(match(scope, tl, FALSE)))
stop("scope is not a subset of term labels")
}
ns <- length(scope)
ans <- matrix(nrow = ns + 1, ncol = 2, dimnames = list(c("<none>",
scope), c("df", "AIC")))
ans[1, ] <- extractAIC(object, scale, k = k, ...)
#-------------------------------------------------------------------------------
#--------------- PARALLEL-------------------------------------------------------
#-------------------------------------------------------------------------------
# function for parallel apply
fn <- function(term)
{
if (trace)
cat("trying -", term, "\n")
nfit <- update(object, as.formula(paste("~ . -", term)), what="All", evaluate = FALSE, trace=FALSE)
nfit <- try(eval.parent(nfit), silent=TRUE)
if (any(class(nfit)%in%"try-error"))
{
cat("Model with term ", term, "has failed \n")
NA# extractAIC(object, scale, k = k, ...)
}
else extractAIC(nfit, scale, k = k, ...)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# -------- parallel -----------------------------------------------------------
#-------------------------------------------------------------------------------------
ans[-1,] <- if (ncpus > 1L && (have_mc || have_snow))
{
if (have_mc)
{# sapply(scope, fn)
matrix(unlist(parallel::mclapply(scope, fn, mc.cores = ncpus)), ncol=2,
byrow = T)
}
else if (have_snow)
{
list(...)
if (is.null(cl))
{
# make the cluster
# cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))
# cl <- parallel::makeForkCluster(ncpus)
# if (RNGkind()[1L] == "L'Ecuyer-CMRG")
# parallel::clusterSetRNGStream(cl)
res <- t(parallel::parSapply(cl, scope, fn))
# parallel::stopCluster(cl)
res
}
else t(parallel::parSapply(cl, scope, fn))
}
} # end parallel ----------------------------------------------------------
else t(sapply(scope, fn))
dfs <- ans[1, 1] - ans[, 1]
dfs[1] <- NA
aod <- data.frame(Df = dfs, AIC = ans[, 2])
o <- if (sorted)
order(aod$AIC)
else seq(along = aod$AIC)
test <- match.arg(test)
if (test == "Chisq")
{
dev <- ans[, 2] - k * ans[, 1]
dev <- dev - dev[1]
dev[1] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
}
aod <- aod[o, ]
head <- c("Single term deletions", "\nModel:", deparse(as.vector(formula(object))))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
addtermAllP <- function (object,
scope,
test = c("Chisq", "none" ),
k = 2,
sorted = FALSE,
trace = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = 1L,
cl = NULL,
...)
{
#-------------------------------------------------------------------------------
add.scope <- function (terms1, terms2 )
{
terms1 <- terms(terms1)
terms2 <- terms(terms2)
factor.scope(attr(terms1, "factor"), list(add = attr(terms2, "factor")))$add
}
#------------------------------------------------------------------------------
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
safe_pchisq <- function (q, df, ...)
{
df[df <= 0] <- NA
pchisq(q = q, df = df, ...)
}
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
if (missing(scope) || is.null(scope))
stop("no terms in scope")
if (!is.character(scope))
scope <- add.scope(object, terms(update.formula(formula(object, "mu"), scope)))
if (!length(scope))
stop("no terms in scope for adding to object")
ns <- length(scope)
ans <- matrix(nrow = ns + 1, ncol = 2, dimnames = list(c("<none>",
scope), c("df", "AIC")))
ans[1, ] <- extractAIC(object, scale, k = k, ...)
#-------------------------------------------------------------------------------
# function for parallel apply
fn <- function(term)
{
if (trace)
cat("trying -", term, "\n")
nfit <- update(object, as.formula(paste("~ . +", term)), what="All", trace=FALSE, evaluate = FALSE)
nfit <- try(eval.parent(nfit), silent=TRUE)
if (any(class(nfit)%in%"try-error"))
{
cat("Model with term ", term, "has failed \n")
NA# extractAIC(object, scale, k = k, ...)
}
else extractAIC(nfit, scale, k = k, ...)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# -------- parallel -----------------------------------------------------------
ans[-1,] <- if (ncpus > 1L && (have_mc || have_snow))
{
if (have_mc)
{# sapply(scope, fn)
matrix(unlist(parallel::mclapply(scope, fn, mc.cores = ncpus)), ncol=2,
byrow = T)
}
else if (have_snow)
{
list(...)
if (is.null(cl))
{
# make the cluster
# cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))
# cl <- parallel::makeForkCluster(ncpus)
# if (RNGkind()[1L] == "L'Ecuyer-CMRG")
# parallel::clusterSetRNGStream(cl)
res <- t(parallel::parSapply(cl, scope, fn))
# parallel::stopCluster(cl)
res
}
else t(parallel::parSapply(cl, scope, fn))
}
} # end parallel ----------------------------------------------------------
else t(sapply(scope, fn))
dfs <- ans[, 1] - ans[1, 1]
dfs[1] <- NA
aod <- data.frame(Df = dfs, AIC = ans[, 2])
o <- if (sorted)
order(aod$AIC)
else seq(along = aod$AIC)
test <- match.arg(test)
if (test == "Chisq")
{
dev <- ans[, 2] - k * ans[, 1]
dev <- dev[1] - dev
dev[1] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
}
aod <- aod[o, ]
head <- c("Single term additions for", "\nModel:", deparse(as.vector(formula(object))))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# main function starts here
#-------------------------------------------------------------------------------
#--------------- PARALLEL-------------------------------------------------------
#----------------SET UP PART---------------------------------------------------
if (missing(parallel))
parallel <- "no"
parallel <- match.arg(parallel)
have_mc <- have_snow <- FALSE
if (parallel != "no" && ncpus > 1L)
{
if (parallel == "multicore")
have_mc <- .Platform$OS.type != "windows"
else if (parallel == "snow")
have_snow <- TRUE
if (!have_mc && !have_snow)
ncpus <- 1L
loadNamespace("parallel")
}
if (have_snow)
{
cl <- parallel::makeForkCluster(ncpus)
if (RNGkind()[1L] == "L'Ecuyer-CMRG")
parallel::clusterSetRNGStream(cl)
on.exit(parallel::stopCluster(cl))
}
# -------------- finish parallel------------------------------------------------
#-------------------------------------------------------------------------------
Terms <- terms(object)
object$formula <- Terms
object$call$formula <- Terms
md <- missing(direction)
direction <- match.arg(direction)
backward <- direction == "both" | direction == "backward"
forward <- direction == "both" | direction == "forward"
if (missing(scope))
{
fdrop <- numeric(0)
fadd <- attr(Terms, "factors")
if (md)
forward <- FALSE
}
else
{
if (is.list(scope))
{
fdrop <- if (!is.null(fdrop <- scope$lower))
attr(terms(update.formula(formula(object, what="mu"), fdrop), what = "mu"), "factors")
else numeric(0)
fadd <- if (!is.null(fadd <- scope$upper))
attr(terms(update.formula(formula(object, what="mu"), fadd), what = "mu"), "factors")
}
else
{
fadd <- if (!is.null(fadd <- scope))
attr(terms(update.formula(formula(object, what="mu"), scope), what = "mu" ), "factors")
fdrop <- numeric(0)
}
}
models <- vector("list", steps)
if (!is.null(keep))
keep.list <- vector("list", steps)
if (is.list(object) && (nmm <- match("nobs", names(object),
0)) > 0)
n <- object[[nmm]]
else n <- length(residuals(object))
fit <- object
bAIC <- extractAIC(fit, scale, k = k, ...)
edf <- bAIC[1]
bAIC <- bAIC[2]
if (is.na(bAIC))
stop("AIC is not defined for this model, so stepAIC cannot proceed")
nm <- 1
Terms <- terms(fit, "mu")
if (trace)
#cat("Distribution parameter: ", what, "\n")
cat("Start: AIC=", format(round(bAIC, 2)), "\n", cut.string(deparse(as.vector(formula(fit, what="mu")))),
"\n\n")
models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n -
edf, change = "", AIC = bAIC)
if (!is.null(keep))
keep.list[[nm]] <- keep(fit, bAIC)
usingCp <- FALSE
while (steps > 0)
{
steps <- steps - 1
AIC <- bAIC
ffac <- attr(Terms, "factors")
if (!is.null(sp <- attr(Terms, "specials")) && !is.null(st <- sp$strata))
ffac <- ffac[-st, ]
scope <- factor.scope(ffac, list(add = fadd, drop = fdrop))
aod <- NULL
change <- NULL
if (backward && length(scope$drop))
{
aod <- droptermAllP(fit, scope$drop, trace = max(0,trace - 1), k = k,
test="none", parallel = parallel, ncpus = ncpus, cl = cl)
rn <- row.names(aod)
row.names(aod) <- c(rn[1], paste("-", rn[-1], sep = " "))
if (any(aod$Df == 0, na.rm = TRUE))
{
zdf <- aod$Df == 0 & !is.na(aod$Df)
nc <- match(c("Cp", "AIC"), names(aod))
nc <- nc[!is.na(nc)][1]
ch <- abs(aod[zdf, nc] - aod[1, nc]) > 0.01
if (any(ch))
{
warning("0 df terms are changing AIC")
zdf <- zdf[!ch]
}
if (length(zdf) > 0)
change <- rev(rownames(aod)[zdf])[1]
}
}
if (is.null(change))
{
if (forward && length(scope$add))
{
aodf <- addtermAllP(fit, scope$add, trace = max(0, trace - 1), k = k,
test="none",parallel = parallel, ncpus = ncpus, cl = cl)
rn <- row.names(aodf)
row.names(aodf) <- c(rn[1], paste("+", rn[-1],
sep = " "))
aod <- if (is.null(aod))
aodf
else rbind(aod, aodf[-1, , drop = FALSE])
}
attr(aod, "heading") <- NULL
if (is.null(aod) || ncol(aod) == 0)
break
nzdf <- if (!is.null(aod$Df))
aod$Df != 0 | is.na(aod$Df)
aod <- aod[nzdf, ]
if (is.null(aod) || ncol(aod) == 0)
break
nc <- match(c("Cp", "AIC"), names(aod))
nc <- nc[!is.na(nc)][1]
o <- order(aod[, nc])
if (trace)
print(aod[o, ])
if (o[1] == 1)
break
change <- rownames(aod)[o[1]]
}
usingCp <- match("Cp", names(aod), 0) > 0
fit <- update(fit, paste("~ .", change), evaluate = FALSE, what="All", trace = FALSE) #MS
fit <- eval.parent(fit)
if (is.list(fit) && (nmm <- match("nobs", names(fit),
0)) > 0)
nnew <- fit[[nmm]]
else nnew <- length(residuals(fit))
if (nnew != n)
stop("number of rows in use has changed: remove missing values?")
Terms <- terms(fit, "mu")
bAIC <- extractAIC(fit, scale, k = k, ...)
edf <- bAIC[1]
bAIC <- bAIC[2]
if (trace)
cat("\nStep: AIC=", format(round(bAIC, 2)), "\n",
cut.string(deparse(as.vector(formula(fit, "mu")))),
"\n\n")
if (bAIC >= AIC + 1e-07)
break
nm <- nm + 1
models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n -
edf, change = change, AIC = bAIC)
if (!is.null(keep))
keep.list[[nm]] <- keep(fit, bAIC)
}
if (!is.null(keep))
fit$keep <- re.arrange(keep.list[seq(nm)])
step.results(models = models[seq(nm)], fit, object, usingCp)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.