tests/testthat/test-add_global_p.tbl_uvregression.R

skip_on_cran()
skip_if_not(is_pkg_installed(c("broom.helpers", "car", "aod", "cardx"), reference_pkg = "gtsummary"))

test_that("add_global_p.tbl_uvregression(x)", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  expect_silent(
    res <- tbl |> add_global_p()
  )

  expect_snapshot(res |> as.data.frame())

  # two model terms, two p values
  expect_equal(
    sum(!is.na(res$table_body$p.value)),
    2
  )

  # test p-values are properly being calculated
  expect_equal(
    res$table_body$p.value[1:2],
    c(
      (car::Anova(lm(marker ~ age, trial)))$`Pr(>F)`[1],
      (car::Anova(lm(marker ~ grade, trial)))$`Pr(>F)`[1]
    )
  )
})

test_that("add_global_p.tbl_uvregression(include)", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  res1 <- tbl |> add_global_p(include = age)

  # one expected p-value for age
  expect_equal(
    sum(!is.na(res1$table_body$p.value)),
    1
  )
})

test_that("add_global_p.tbl_uvregression(type)", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  res2 <- tbl |> add_global_p(type = "II")

  # 4 expected p-values, 2 for each variable, 2 for each level of grade
  expect_equal(
    sum(!is.na(res2$table_body$p.value)),
    2
  )

  expect_equal(
    res2$table_body$p.value[1:2],
    c(
      (car::Anova(lm(marker ~ age, trial), type = "II"))$`Pr(>F)`[1],
      (car::Anova(lm(marker ~ grade, trial), type = "II"))$`Pr(>F)`[1]
    )
  )
})

test_that("add_global_p.tbl_uvregression(keep)", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  res3 <- tbl |> add_global_p(keep = TRUE)

  # 4 expected p-values, 2 for each variable, 2 for each level of grade
  expect_equal(
    sum(!is.na(res3$table_body$p.value)),
    4
  )
})

test_that("add_global_p.tbl_uvregression(anova_fun)", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  res4 <- tbl |> add_global_p(anova_fun = cardx::ard_aod_wald_test)

  # two model terms, two p values
  expect_equal(
    sum(!is.na(res4$table_body$p.value)),
    2
  )

  # p-values match when using aod_wald_test
  expect_equal(
    res4$table_body$p.value[1:2],
    c(
      lm(marker ~ age, trial) |>
        cardx::ard_aod_wald_test() |>
        dplyr::filter(variable %in% c("age", "grade") & stat_name == "p.value") |>
        dplyr::pull(stat) %>%
        unlist(),
      lm(marker ~ grade, trial) |>
        cardx::ard_aod_wald_test() |>
        dplyr::filter(variable %in% c("age", "grade") & stat_name == "p.value") |>
        dplyr::pull(stat) %>%
        unlist()
    )
  )
})

test_that("add_global_p.tbl_uvregression(anova_fun) inappropriate anova function", {
  tbl <- trial |>
    tbl_uvregression(method = lm, y = marker, include = c("age", "grade"))

  broken_anova <- function(x) {
    x + 1
  }

  expect_error(
    res5 <- tbl |> add_global_p(anova_fun = broken_anova),
    regexp = "There was an error running `anova_fun`"
  )
})

test_that("geeglm model for add_global_p.tbl_uvregression()", {
  res5 <- geepack::respiratory |>
    tbl_uvregression(
      method = geepack::geeglm,
      y = outcome,
      include = c("treat", "baseline"),
      method.args = list(
        family = binomial,
        id = id,
        corstr = "exchangeable"
      ),
    ) |>
    add_global_p()

  expect_equal(
    res5$table_body |>
      dplyr::filter(variable == "treat") |>
      dplyr::pull("p.value") |>
      getElement(1L),
    geepack::geeglm(
      outcome ~ treat,
      geepack::respiratory,
      family = binomial,
      id = id,
      corstr = "exchangeable"
    ) |>
      cardx::ard_aod_wald_test() |> # calculate Wald p-value
      dplyr::filter(variable == "treat", stat_name == "p.value") |>
      dplyr::pull("stat") |>
      unlist()
  )

  expect_equal(
    res5$table_body |>
      dplyr::filter(variable == "baseline") |>
      dplyr::pull("p.value") |>
      getElement(1L),
    geepack::geeglm(
      outcome ~ baseline, geepack::respiratory,
      family = binomial,
      id = id,
      corstr = "exchangeable"
    ) |>
      cardx::ard_aod_wald_test() |> # calculate Wald p-value
      dplyr::filter(variable == "baseline", stat_name == "p.value") |>
      dplyr::pull("stat") |>
      unlist()
  )
})

test_that("modify tidy_fun to not show p-values", {
  expect_silent(
    res6 <- trial |>
      tbl_uvregression(
        method = glm,
        y = response,
        include = c("age", "grade"),
        tidy_fun = \(x, ...) broom::tidy(x, ...) |> dplyr::select(-p.value)
      ) |>
      add_global_p()
  )
  expect_snapshot(res6 %>% as.data.frame())
})

Try the gtsummary package in your browser

Any scripts or data that you put into this service are public.

gtsummary documentation built on Oct. 5, 2024, 1:06 a.m.