Nothing
#' @importFrom stats approx
#' @importFrom methods new
#' @import Matrix
#' @importFrom graphics segments
cvcompute = function(mat, foldid, nlams) {
# This function is adapted from glmnet package.
# computes the weighted mean and SD within folds, and
# hence the standard error of the mean
nfolds = max(foldid)
outmat = matrix(NA, nfolds, ncol(mat))
good = matrix(0, nfolds, ncol(mat))
mat[is.infinite(mat)] = NA
for (i in seq(nfolds)) {
mati = mat[foldid == i, ]
outmat[i, ] = colMeans(mati, na.rm=TRUE)
good[i, seq(nlams[i])] = 1
}
N = colSums(good)
list(cvraw = outmat, N = N)
}
err = function(n, maxit) {
# This function is adapted from glmnet package.
if (n == 0) msg = ""
if (n < 0) {
msg = paste0("convergence for ", -n,
"th lambda value not reached after maxit=", maxit,
" iterations; solutions for larger lambdas returned")
n = -1
msg = paste("From kerneltool fortran code:", msg)
}
list(n = n, msg = msg)
}
error.bars = function(x, upper, lower, width=0.02, ...) {
# This function is adapted from glmnet package.
xlim = range(x)
barw = diff(xlim) * width
segments(x, upper, x, lower, ...)
segments(x - barw, upper, x + barw, upper, ...)
segments(x - barw, lower, x + barw, lower, ...)
range(upper, lower)
}
getmin = function(lambda, cvm, cvsd) {
# This function is adapted from glmnet package.
cvmin = min(cvm, na.rm=TRUE)
idmin = cvm <= cvmin
lambda.min = max(lambda[idmin], na.rm=TRUE)
cvmin2 = min(cvm[!is.na(cvsd)])
lambda.min2 = max(lambda[cvm[!is.na(cvsd)] <= cvmin2], na.rm=TRUE)
idmin = match(lambda.min2, lambda)
semin = (cvm + cvsd)[idmin]
idmin = cvm[!is.na(cvsd)] <= semin
lambda.1se = max(lambda[idmin])
id1se = match(lambda.1se, lambda)
cv.1se = cvm[id1se]
list(lambda.min = lambda.min, lambda.1se = lambda.1se,
cvm.min = cvmin, cvm.1se = cv.1se)
}
lambda.interp <- function(lambda, s) {
# LAMBDA IS THE INDEX SEQUENCE THAT IS PRODUCED BY THE MODEL;
# S IS THE NEW VECTOR AT WHICH EVALUATIONS ARE REQUIRED.
# THE VALUE IS A VECTOR OF LEFT AND RIGHT INDICES, AND A VECTOR OF FRACTIONS.
# THE NEW VALUES ARE INTERPOLATED BEWTEEN THE TWO USING THE FRACTION
# NOTE: LAMBDA DECREASES. YOU TAKE: SFRAC*LEFT+(1-SFRAC)*RIGHT
if (length(lambda) == 1) {
nums <- length(s)
left <- rep(1, nums)
right <- left
sfrac <- rep(1, nums)
} else {
s[s > max(lambda)] <- max(lambda)
s[s < min(lambda)] <- min(lambda)
k <- length(lambda)
sfrac <- (lambda[1] - s)/(lambda[1] - lambda[k])
lambda <- (lambda[1] - lambda)/(lambda[1] - lambda[k])
coord <- approx(lambda, seq(lambda), sfrac)$y
left <- floor(coord)
right <- ceiling(coord)
sfrac <- (sfrac - lambda[right])/(lambda[left] - lambda[right])
sfrac[left == right] <- 1
}
list(left = left, right = right, frac = sfrac)
}
######################################################################
## These functions are minor modifications or directly
# copied from the glmnet package:
## Jerome Friedman, Trevor Hastie, Robert Tibshirani
# (2010).
## Regularization Paths for Generalized Linear Models via
# Coordinate Descent.
## Journal of Statistical Software, 33(1), 1-22.
## URL http://www.jstatsoft.org/v33/i01/.
err_pmax = function(n, maxit, pmax) {
if (n == 0)
msg = ""
if (n > 0) {
if (n < 7777)
msg = "Memory allocation error"
if (n == 7777)
msg = "All used predictors have zero variance"
if (n == 10000)
msg = "All penalty factors are <= 0"
n = 1
msg = paste("in hdsvm fortran code -", msg)
}
if (n < 0) {
if (n > -10000)
msg = paste0("Convergence for ", -n, "th lambda value not reached after maxit=",
maxit, " iterations; solutions for larger lambdas returned")
if (n < -10000)
msg = paste0("Number of nonzero coefficients along the path exceeds pmax=",
pmax, " at ", -n - 10000, "th lambda value; solutions for larger lambdas returned")
n = -1
msg = paste("from hdsvm fortran code -", msg)
}
list(n = n, msg = msg)
}
getoutput <- function(fit, maxit, pmax, nvars, vnames) {
nalam <- fit$nalam
nbeta <- fit$nbeta[seq(nalam)]
nbetamax <- max(nbeta)
lam <- fit$alam[seq(nalam)]
stepnames <- paste("s", seq(nalam) - 1, sep = "")
errmsg <- err_pmax(fit$jerr, maxit, pmax)
switch(paste(errmsg$n), `1` = stop(errmsg$msg, call. = FALSE),
`-1` = print(errmsg$msg, call. = FALSE))
dd <- c(nvars, nalam)
if (nbetamax > 0) {
beta <- matrix(fit$beta[seq(pmax * nalam)],
pmax, nalam)[seq(nbetamax), , drop = FALSE]
df <- apply(abs(beta) > 0, 2, sum)
ja <- fit$ibeta[seq(nbetamax)]
oja <- order(ja)
ja <- rep(ja[oja], nalam)
ibeta <- cumsum(c(1, rep(nbetamax, nalam)))
beta <- new("dgCMatrix", Dim = dd, Dimnames = list(vnames,
stepnames), x = as.vector(beta[oja, ]),
p = as.integer(ibeta - 1), i = as.integer(ja - 1))
} else {
beta <- zeromat(nvars, nalam, vnames, stepnames)
df <- rep(0L, nalam)
}
b0 <- fit$b0
if (!is.null(b0)) {
b0 <- b0[seq(nalam)]
names(b0) <- stepnames
}
list(b0 = b0, beta = beta, df = df, dim = dd, lambda = lam)
}
lamfix <- function(lam) {
llam <- log(lam)
lam[1] <- exp(2 * llam[2] - llam[3])
lam
}
nonzero <- function(beta, bystep = FALSE) {
ns <- ncol(beta)
# BETA SHOULD BE IN 'DGCMATRIX' FORMAT
if (nrow(beta) == 1) {
if (bystep) {
apply(beta, 2, function(x) if (abs(x) > 0) 1 else NULL)
} else {
if (any(abs(beta) > 0)) 1 else NULL
}
} else {
beta <- t(beta)
which <- diff(beta@p)
which <- seq(which)[which > 0]
if (bystep) {
nzel <- function(x, which) if (any(x)) which[x] else NULL
beta <- abs(as.matrix(beta[, which])) > 0
if (ns == 1) {
apply(beta, 2, nzel, which)
} else apply(beta, 1, nzel, which)
} else which
}
}
zeromat <- function(nvars, nalam, vnames, stepnames) {
ca <- rep(0, nalam)
ia <- seq(nalam + 1)
ja <- rep(1, nalam)
dd <- c(nvars, nalam)
new("dgCMatrix", Dim = dd, Dimnames = list(vnames, stepnames),
x = as.vector(ca), p = as.integer(ia - 1), i = as.integer(ja - 1))
}
deriv_scad = function(u, lambda, a = 3.7) {
u = abs(u) # u must be nonnegative
lambda * (u <= lambda) + (a * lambda - u) / (a - 1) *
(u > lambda) * (u <= a * lambda)
}
deriv_mcp = function(u, lambda, a = 2) {
u = abs(u) # u must be nonnegative
(lambda - u / a) * (u <= a * lambda)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.