R/utilities.R

Defines functions deriv_mcp deriv_scad zeromat nonzero lamfix getoutput err_pmax lambda.interp getmin error.bars err cvcompute

#' @importFrom stats approx
#' @importFrom methods new
#' @import Matrix
#' @importFrom graphics segments

cvcompute = function(mat, foldid, nlams) {
# This function is adapted from glmnet package. 
# computes the weighted mean and SD within folds, and
# hence the standard error of the mean
  nfolds = max(foldid)
  outmat = matrix(NA, nfolds, ncol(mat))
  good = matrix(0, nfolds, ncol(mat))
  mat[is.infinite(mat)] = NA
  for (i in seq(nfolds)) {
    mati = mat[foldid == i, ]
    outmat[i, ] = colMeans(mati, na.rm=TRUE)
    good[i, seq(nlams[i])] = 1
  }
  N = colSums(good)
  list(cvraw = outmat, N = N)
}

err = function(n, maxit) {
# This function is adapted from glmnet package.  
  if (n == 0) msg = ""
  if (n < 0) {    
    msg = paste0("convergence for ", -n, 
      "th lambda value not reached after maxit=", maxit, 
      " iterations; solutions for larger lambdas returned")
    n = -1
    msg = paste("From kerneltool fortran code:", msg)
  }
  list(n = n, msg = msg)
}

error.bars = function(x, upper, lower, width=0.02, ...) {
# This function is adapted from glmnet package.  
  xlim = range(x)
  barw = diff(xlim) * width
  segments(x, upper, x, lower, ...)
  segments(x - barw, upper, x + barw, upper, ...)
  segments(x - barw, lower, x + barw, lower, ...)
  range(upper, lower)
}

getmin = function(lambda, cvm, cvsd) {
# This function is adapted from glmnet package.
  cvmin = min(cvm, na.rm=TRUE)
  idmin = cvm <= cvmin
  lambda.min = max(lambda[idmin], na.rm=TRUE)
  cvmin2 = min(cvm[!is.na(cvsd)])
  lambda.min2 = max(lambda[cvm[!is.na(cvsd)] <= cvmin2], na.rm=TRUE)
  idmin = match(lambda.min2, lambda)
  semin = (cvm + cvsd)[idmin]
  idmin = cvm[!is.na(cvsd)] <= semin
  lambda.1se = max(lambda[idmin])
  id1se = match(lambda.1se, lambda)
  cv.1se = cvm[id1se]
  list(lambda.min = lambda.min, lambda.1se = lambda.1se, 
    cvm.min = cvmin, cvm.1se = cv.1se)
}

lambda.interp <- function(lambda, s) {
  # LAMBDA IS THE INDEX SEQUENCE THAT IS PRODUCED BY THE MODEL;
  # S IS THE NEW VECTOR AT WHICH EVALUATIONS ARE REQUIRED.
  # THE VALUE IS A VECTOR OF LEFT AND RIGHT INDICES, AND A VECTOR OF FRACTIONS.
  # THE NEW VALUES ARE INTERPOLATED BEWTEEN THE TWO USING THE FRACTION
  # NOTE: LAMBDA DECREASES. YOU TAKE: SFRAC*LEFT+(1-SFRAC)*RIGHT
  if (length(lambda) == 1) {
    nums <- length(s)
    left <- rep(1, nums)
    right <- left
    sfrac <- rep(1, nums)
  } else {
    s[s > max(lambda)] <- max(lambda)
    s[s < min(lambda)] <- min(lambda)
    k <- length(lambda)
    sfrac <- (lambda[1] - s)/(lambda[1] - lambda[k])
    lambda <- (lambda[1] - lambda)/(lambda[1] - lambda[k])
    coord <- approx(lambda, seq(lambda), sfrac)$y
    left <- floor(coord)
    right <- ceiling(coord)
    sfrac <- (sfrac - lambda[right])/(lambda[left] - lambda[right])
    sfrac[left == right] <- 1
  }
  list(left = left, right = right, frac = sfrac)
}


######################################################################
## These functions are minor modifications or directly
#   copied from the glmnet package:
## Jerome Friedman, Trevor Hastie, Robert Tibshirani
#   (2010).
## Regularization Paths for Generalized Linear Models via
#   Coordinate Descent.
##    Journal of Statistical Software, 33(1), 1-22.
##    URL http://www.jstatsoft.org/v33/i01/.


err_pmax = function(n, maxit, pmax) {
  if (n == 0) 
    msg = ""
  if (n > 0) {
    if (n < 7777) 
      msg = "Memory allocation error"
    if (n == 7777) 
      msg = "All used predictors have zero variance"
    if (n == 10000) 
      msg = "All penalty factors are <= 0"
    n = 1
    msg = paste("in hdsvm fortran code -", msg)
  }
  if (n < 0) {
    if (n > -10000) 
      msg = paste0("Convergence for ", -n, "th lambda value not reached after maxit=", 
          maxit, " iterations; solutions for larger lambdas returned")
    if (n < -10000) 
      msg = paste0("Number of nonzero coefficients along the path exceeds pmax=", 
          pmax, " at ", -n - 10000, "th lambda value; solutions for larger lambdas returned")
    n = -1
    msg = paste("from hdsvm fortran code -", msg)
  }
  list(n = n, msg = msg)
}


getoutput <- function(fit, maxit, pmax, nvars, vnames) {
  nalam <- fit$nalam
  nbeta <- fit$nbeta[seq(nalam)]
  nbetamax <- max(nbeta)
  lam <- fit$alam[seq(nalam)]
  stepnames <- paste("s", seq(nalam) - 1, sep = "")
  errmsg <- err_pmax(fit$jerr, maxit, pmax)
  switch(paste(errmsg$n), `1` = stop(errmsg$msg, call. = FALSE), 
    `-1` = print(errmsg$msg, call. = FALSE))
  dd <- c(nvars, nalam)
  if (nbetamax > 0) {
    beta <- matrix(fit$beta[seq(pmax * nalam)], 
        pmax, nalam)[seq(nbetamax), , drop = FALSE]
    df <- apply(abs(beta) > 0, 2, sum)
    ja <- fit$ibeta[seq(nbetamax)]
    oja <- order(ja)
    ja <- rep(ja[oja], nalam)
    ibeta <- cumsum(c(1, rep(nbetamax, nalam)))
    beta <- new("dgCMatrix", Dim = dd, Dimnames = list(vnames, 
      stepnames), x = as.vector(beta[oja, ]), 
      p = as.integer(ibeta - 1), i = as.integer(ja - 1))
  } else {
    beta <- zeromat(nvars, nalam, vnames, stepnames)
    df <- rep(0L, nalam)
  }
  b0 <- fit$b0
  if (!is.null(b0)) {
    b0 <- b0[seq(nalam)]
    names(b0) <- stepnames
  }
  list(b0 = b0, beta = beta, df = df, dim = dd, lambda = lam)
}


lamfix <- function(lam) {
  llam <- log(lam)
  lam[1] <- exp(2 * llam[2] - llam[3])
  lam
}


nonzero <- function(beta, bystep = FALSE) {
  ns <- ncol(beta)
  # BETA SHOULD BE IN 'DGCMATRIX' FORMAT
  if (nrow(beta) == 1) {
    if (bystep) {
      apply(beta, 2, function(x) if (abs(x) > 0) 1 else NULL)
    } else {
      if (any(abs(beta) > 0)) 1 else NULL
    }
  } else {
    beta <- t(beta)
    which <- diff(beta@p)
    which <- seq(which)[which > 0]
    if (bystep) {
      nzel <- function(x, which) if (any(x)) which[x] else NULL
      beta <- abs(as.matrix(beta[, which])) > 0
      if (ns == 1) {
        apply(beta, 2, nzel, which)
      } else apply(beta, 1, nzel, which)
    } else which
  }
}


zeromat <- function(nvars, nalam, vnames, stepnames) {
  ca <- rep(0, nalam)
  ia <- seq(nalam + 1)
  ja <- rep(1, nalam)
  dd <- c(nvars, nalam)
  new("dgCMatrix", Dim = dd, Dimnames = list(vnames, stepnames),
      x = as.vector(ca), p = as.integer(ia - 1), i = as.integer(ja - 1))
}

deriv_scad = function(u, lambda, a = 3.7) {
  u = abs(u) # u must be nonnegative
  lambda * (u <= lambda) + (a * lambda - u) / (a - 1) *
    (u > lambda) * (u <= a * lambda)
}
deriv_mcp = function(u, lambda, a = 2) {
  u = abs(u) # u must be nonnegative
  (lambda - u / a) * (u <= a * lambda)
}

Try the hdsvm package in your browser

Any scripts or data that you put into this service are public.

hdsvm documentation built on April 12, 2025, 1:27 a.m.