Nothing
# Add the 1compartment model with time-dependent parameters, as specified here
# in input.var.names
# Model identifier for the model.list:
THIS.MODEL <- "1compartment_lifestage"
# Does this model work with Monte Carlo parameter sampling?
model.list[[THIS.MODEL]]$monte.carlo <- TRUE
# Analytic expression for steady-state plasma concentration.
model.list[[THIS.MODEL]]$analytic.css.func <- "calc_analytic_css_1comp"
# When calculating steady-state, which compartment do we test?
# ("C" is preprended):
model.list[[THIS.MODEL]]$steady.state.compartment <- "compartment"
# What units does the analytic function return:
model.list[[THIS.MODEL]]$steady.state.units <- "mg/L"
# Function used for generating model parameters:
model.list[[THIS.MODEL]]$parameterize.func <- "parameterize_1comp"
# Function called for running the model:
model.list[[THIS.MODEL]]$solve.func <- "solve_1comp_lifestage"
# Here are the tissues from tissue.data that are considered:
model.list[[THIS.MODEL]]$alltissues=c(
"adipose",
"bone",
"brain",
"gut",
"heart",
"kidney",
"liver",
"lung",
"muscle",
"skin",
"spleen",
"red blood cells",
"rest")
# 1compartment model lumps everything, so list of compartments is empty.
model.list[[THIS.MODEL]]$tissuelist <- NULL
# These are all the parameters returned by the R model parameterization function.
# Some of these parameters are not directly used to solve the model, but describe
# how other parameters were calculated:
model.list[[THIS.MODEL]]$param.names <- c(
"BW",
"Caco2.Pab",
"Caco2.Pab.dist",
"Clint",
"Clint.dist",
"Fabsgut",
"Fhep.assay.correction",
"Funbound.plasma",
"Funbound.plasma.dist",
"Funbound.plasma.adjustment",
"hepatic.bioavailability",
"hematocrit",
"kelim",
"kgutabs",
"liver.density",
"million.cells.per.gliver",
"MA",
"MW",
"Rblood2plasma",
'plasma.vol',
"Pow",
"pKa_Donor",
"pKa_Accept",
"Vdist")
# This subset of R parameters are needed to initially parametrize the compiled
# code for the solver: (must match ORDER under "parameters" in C code)
model.list[[THIS.MODEL]]$Rtosolvermap <- list(
vdist="Vdist",
ke="kelim",
kgutabs="kgutabs",
BW="BW")
# If the model does not include an explicit gut-liver link before systemic
# circulation, then we want to decrease the absorbed dose by the first past
# hepatic extraction factor:
model.list[[THIS.MODEL]]$do.first.pass <- TRUE
# This function translates the R model parameters into the compiled model
# parameters:
model.list[[THIS.MODEL]]$compiled.parameters.init <- "getParms1comp_lifestage"
# This is the ORDERED full list of parameters used by the compiled code to
# calculate the derivative of the system of equations describing the model
model.list[[THIS.MODEL]]$compiled.param.names <- c(
"vdist",
"ke",
"kgutabs",
"BW")
# This function initializes the state vector for the compiled model:
model.list[[THIS.MODEL]]$compiled.init.func <- "initmod1comp_lifestage"
# This is the ORDERED list of input variables given to the C code by the solver
# (from Forcing (Input) functions -- forc):
model.list[[THIS.MODEL]]$input.var.names <- c(
"d_BW",
"d_ke",
"d_vdist"
)
#Key forcings objects and names: name of forcing function as it appears in
#.c model code for specification to ode solver (initforc), fcontrol list
#of arguments for fine-tuning inhalation forcing function in conjunction
#with existing ode integrator methods. Forcings series handled in model
#solver itself
model.list[[THIS.MODEL]]$forcings.materials <- list(initforc="initforc1comp_lifestage",
fcontrol = list(method='linear',rule=2,f=0))
# This is the function that calculates the derviative of the model as a function
# of time, state, and parameters:
model.list[[THIS.MODEL]]$derivative.func <- "derivs1comp_lifestage"
# This is the ORDERED list of variables returned by the derivative function:
model.list[[THIS.MODEL]]$derivative.output.names <- c(
"Ccompartment")
model.list[[THIS.MODEL]]$default.monitor.vars <- c(
"Agutlumen",
"Ccompartment",
"Ametabolized",
"AUC")
# Allowable units assigned to dosing input:
model.list[[THIS.MODEL]]$allowed.units.input <- list(
"oral" = c('umol','mg','mg/kg'),
"iv" = c('umol','mg','mg/kg'))
# Allowable units assigned to entries in the output columns of the ode system
model.list[[THIS.MODEL]]$allowed.units.output <- list(
"oral" = c('umol','uM','mg/L','uM*days','mg/L*days'),
"iv" = c('umol','uM','mg/L','uM*days','mg/L*days'))
# Default set of units assigned to correspond to each of the time dependent
# variables of the model system including state variables and any transformed
# outputs (for example, concentrations calculated from amounts.)
# AUC values should also be included.
model.list[[THIS.MODEL]]$compartment.units <- c(
"Agutlumen"="umol",
"Acompartment"="umol",
"Ametabolized"="umol",
"Ccompartment"="uM",
"AUC" = "uM*days")
# Compartment state of matter, needed for proper unit conversion, if all
# comaprtments of the same only include one state and set it to "all":
model.list[[THIS.MODEL]]$compartment.state <- list(liquid="all")
# These parameters specific the exposure scenario simulated by the model:
model.list[[THIS.MODEL]]$dosing.params <- c(
"daily.dose",
"initial.dose",
"doses.per.day",
"dosing.matrix")
model.list[[THIS.MODEL]]$routes <- list(
"oral" = list(
# We need to know which compartment gets the dose
"entry.compartment" = "Agutlumen",
# desolve events can take the values "add" to add dose C1 <- C1 + dose,
# "replace" to change the value C1 <- dose
# or "multiply" to change the value to C1 <- C1*dose
"dose.type" = "add",
"dosing.params" = c("daily.dose",
"initial.dose",
"doses.per.day",
"dosing.matrix")),
"iv" = list(
"entry.compartment" = "Acompartment",
"dose.type" = "add",
"dosing.params" = c("initial.dose",
"dosing.matrix"))
)
# ORDERED LIST of state variables (must match Model variables:
# States in C code, each of which is associated with a differential equation),
# mostly calculated in amounts, though AUC (area under plasma concentration
# curve) also appears here:
model.list[[THIS.MODEL]]$state.vars <- c(
"Agutlumen",
"Acompartment",
"Ametabolized",
"AUC")
#Parameters needed to make a prediction (this is used by get_cheminfo):
model.list[[THIS.MODEL]]$required.params <- c(
"Clint",
"Funbound.plasma",
"Pow",
"pKa_Donor",
"pKa_Accept",
"MW"
)
# Function for calculating Clmetabolismc after Clint is varied:
model.list[[THIS.MODEL]]$propagateuv.func <- "propagate_invitrouv_1comp"
# If httk-pop is enabled:
# Function for converting httk-pop physiology to model parameters:
model.list[[THIS.MODEL]]$convert.httkpop.func <- NULL
# We want all the standard physiological calculations performed:
model.list[[THIS.MODEL]]$calc.standard.httkpop2httk <- TRUE
# These are the model parameters that are impacted by httk-pop:
model.list[[THIS.MODEL]]$httkpop.params <- c(
"BW",
"Fabsgut",
"hepatic.bioavailability",
"hematocrit",
"liver.density",
"million.cells.per.gliver",
"Rblood2plasma",
"Vdist")
# Do we need to recalculate partition coefficients when doing Monte Carlo?
model.list[[THIS.MODEL]]$calcpc <- TRUE
# Do we need to recalculate first pass metabolism when doing Monte Carlo?
model.list[[THIS.MODEL]]$firstpass <- TRUE
# Do we ignore the Fups where the value was below the limit of detection?
model.list[[THIS.MODEL]]$exclude.fup.zero <- TRUE
# These are the parameter names needed to describe steady-state dosing:
model.list[[THIS.MODEL]]$css.dosing.params <- list(
oral=c("hourly.dose"))
# Filter out compounds belonging to select chemical classes
model.list[[THIS.MODEL]]$chem.class.filt <- c("PFAS")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.