Nothing
# Add the default physiologically-base toxicokinetic (PBTK) model
# with time-dependent parameters, as specified here in input.var.names
# Model identifier for the model.list:
THIS.MODEL <- "pbtk_lifestage"
# Does this model work with Monte Carlo parameter sampling?
model.list[[THIS.MODEL]]$monte.carlo <- TRUE
# Analytic expression for steady-state plasma concentration to be used by
# calc_analytic_css:
model.list[[THIS.MODEL]]$analytic.css.func <- "calc_analytic_css_pbtk"
# What units does the analytic function return in calc_analytic_css:
model.list[[THIS.MODEL]]$steady.state.units <- "mg/L"
# When calculating steady-state with calc_css, which compartment do we test?
# ("C" is preprended):
model.list[[THIS.MODEL]]$steady.state.compartment <- "plasma"
# Function used for generating model parameters:
model.list[[THIS.MODEL]]$parameterize.func <- "parameterize_pbtk"
# Function called for running the model:
model.list[[THIS.MODEL]]$solve.func <- "solve_pbtk_lifestage"
# Here are the tissues from tissue.data that are considered (for example,
# do we include placenta or not? Here, yes we do). They should correspond
# in name to the names present in the tissue.data object, if the parameters
# necessary for describing the tissue/compartment aren't going to be provided
# otherwise.
model.list[[THIS.MODEL]]$alltissues=c(
"adipose",
"bone",
"brain",
"gut",
"heart",
"kidney",
"liver",
"lung",
"muscle",
"skin",
"spleen",
"red blood cells",
"rest")
# How the tissues from tissue.data are lumped together to form the model:
# PBTK model has liver, kidney, gut, and lung compartments that draw info
# from tissue.data; everything else from alltissues should be lumped.
model.list[[THIS.MODEL]]$tissuelist=list(
liver=c("liver"),
kidney=c("kidney"),
lung=c("lung"),
gut=c("gut"))
# These are all the parameters returned by the R model parameterization function.
# Some of these parameters are not directly used to solve the model, but describe
# how other parameters were calculated:
model.list[[THIS.MODEL]]$param.names <- c(
"BW",
"Caco2.Pab",
"Caco2.Pab.dist",
"Clint",
"Clint.dist",
"Clmetabolismc",
"Funbound.plasma",
"Funbound.plasma.dist",
"Funbound.plasma.adjustment",
"Fabsgut",
"Fhep.assay.correction",
"hematocrit",
"kgutabs",
"Kgut2pu",
"Kkidney2pu",
"Kliver2pu",
"Klung2pu",
"Krbc2pu",
"Krest2pu",
"liver.density",
"million.cells.per.gliver",
"MW",
"Pow",
"pKa_Donor",
"pKa_Accept",
"MA",
"Qcardiacc",
"Qgfrc",
"Qgutf",
"Qkidneyf",
"Qliverf",
"Rblood2plasma",
"Vartc",
"Vgutc",
"Vkidneyc",
"Vliverc",
"Vlungc",
"Vrestc",
"Vvenc")
#
# String representations of the R version of names of
# the parameters are assigned to the C variable name in this scheme.
model.list[[THIS.MODEL]]$Rtosolvermap <- list(
BW="BW",
Clmetabolismc="Clmetabolismc",
Fraction_unbound_plasma="Funbound.plasma",
hematocrit="hematocrit",
kgutabs="kgutabs",
Kgut2pu="Kgut2pu",
Kkidney2pu="Kkidney2pu",
Kliver2pu="Kliver2pu",
Klung2pu="Klung2pu",
Krest2pu="Krest2pu",
Qcardiacc="Qcardiacc",
Qgfrc="Qgfrc",
Qgutf="Qgutf",
Qkidneyf="Qkidneyf",
Qliverf="Qliverf",
Rblood2plasma="Rblood2plasma",
Vartc="Vartc",
Vgutc="Vgutc",
Vkidneyc="Vkidneyc",
Vliverc="Vliverc",
Vlungc="Vlungc",
Vrestc="Vrestc",
Vvenc="Vvenc"
)
# This function translates the R model parameters into the compiled model
# parameters:
model.list[[THIS.MODEL]]$compiled.parameters.init <- "getParmspbtk_lifestage"
# This needs to be a global variable so that R CMD check --as-cran can test
# the code (the HTTK package does not use this):
compiled_parameters_init <- "getParmspbtk_lifestage"
# This is the ORDERED full list of parameters used by the compiled code to
# calculate the derivative of the system of equations describing the model
model.list[[THIS.MODEL]]$compiled.param.names <- c(
"BW",
"Clmetabolismc",
"hematocrit",
"kgutabs",
"Kkidney2pu",
"Kliver2pu",
"Krest2pu",
"Kgut2pu",
"Klung2pu",
"Qcardiacc",
"Qgfrc",
"Qgutf",
"Qkidneyf",
"Qliverf",
"Vartc",
"Vgutc",
"Vkidneyc",
"Vliverc",
"Vlungc",
"Vrestc",
"Vvenc",
"Fraction_unbound_plasma",
"Rblood2plasma",
"Clmetabolism",
"Qcardiac",
"Qgfr",
"Qgut",
"Qkidney",
"Qliver",
"Qrest",
"Vart",
"Vgut",
"Vkidney",
"Vliver",
"Vlung",
"Vrest",
"Vven"
)
# This function initializes the state vector for the compiled model:
model.list[[THIS.MODEL]]$compiled.init.func <- "initmodpbtk_lifestage"
# This is the ORDERED list of input variables given to the C code by the solver
# (from Forcing (Input) functions -- forc):
model.list[[THIS.MODEL]]$input.var.names <- c(
"d_BW",
"d_Clmetabolismc",
"d_hematocrit",
"d_Krest2pu",
"d_Qcardiacc",
"d_Qgfrc",
"d_Vartc",
"d_Vgutc",
"d_Vkidneyc",
"d_Vliverc",
"d_Vlungc",
"d_Vrestc",
"d_Vvenc"
)
#Key forcings objects and names: name of forcing function as it appears in
#.c model code for specification to ode solver (initforc), fcontrol list
#of arguments for fine-tuning inhalation forcing function in conjunction
#with existing ode integrator methods. Forcings series handled in model
#solver itself
model.list[[THIS.MODEL]]$forcings.materials <- list(initforc="initforcpbtk_lifestage",
fcontrol = list(method='linear',rule=2))
# This is the function that calculates the derivative of the model as a function
# of time, state, and parameters:
model.list[[THIS.MODEL]]$derivative.func <- "derivspbtk_lifestage"
# This is the ORDERED list of variables returned by the derivative function
# (from Model variables: Outputs):
model.list[[THIS.MODEL]]$derivative.output.names <- c(
"Cgut",
"Cliver",
"Cven",
"Clung",
"Cart",
"Crest",
"Ckidney",
"Cplasma",
"Aplasma",
"c_BW",
"c_Clmetabolism",
"c_hematocrit",
"c_Krest2pu",
"c_Qcardiac",
"c_Qgfr",
"c_Qgut",
"c_Qkidney",
"c_Qliver",
"c_Qrest",
"c_Vart",
"c_Vgut",
"c_Vkidney",
"c_Vliver",
"c_Vlung",
"c_Vrest",
"c_Vven"
)
#list of variables to be monitored (plotted). This list should be able to be
#constructed from states and outputs.
model.list[[THIS.MODEL]]$default.monitor.vars <- c(
"Cgut",
"Cliver",
"Cven",
"Clung",
"Cart",
"Crest",
"Ckidney",
"Cplasma",
"Atubules",
"Ametabolized",
"AUC"
)
# Allowable units assigned to dosing input:
model.list[[THIS.MODEL]]$allowed.units.input <- list(
"oral" = c('umol','mg','mg/kg'),
"iv" = c('umol','mg','mg/kg'))
# Allowable units assigned to entries in the output columns of the ode system
model.list[[THIS.MODEL]]$allowed.units.output <- list(
"oral" = c('uM','mg/l','umol','mg','uM*days','mg/L*days',
'L/h', 'L', 'kg', '%', 'unitless'),
"iv" = c('uM','mg/l','umol','mg','uM*days','mg/L*days',
'L/h', "L", 'kg', '%', 'unitless'))
## These parameters specify the exposure scenario simulated by the model:
#model.list[[THIS.MODEL]]$dosing.params <- c("daily.dose",
# "initial.dose",
# "doses.per.day",
# "dosing.matrix")
#model.list[[THIS.MODEL]]$routes <- c("oral","iv")
## We need to know which compartment gets the dose
#model.list[[THIS.MODEL]]$dose.variable <- list(oral="Agutlumen",
# iv="Aven")
## Can take the values "add" to add dose C1 <- C1 + dose,
##"replace" to change the value C1 <- dose
##or "multiply" to change the value to C1 <- C1*dose
#model.list[[THIS.MODEL]]$dose.type <- list(oral="add",
# iv="add")
model.list[[THIS.MODEL]]$routes <- list(
"oral" = list(
# We need to know which compartment gets the dose
"entry.compartment" = "Agutlumen",
# desolve events can take the values "add" to add dose C1 <- C1 + dose,
# "replace" to change the value C1 <- dose
# or "multiply" to change the value to C1 <- C1*dose
"dose.type" = "add",
"dosing.params" = c("daily.dose",
"initial.dose",
"doses.per.day",
"dosing.matrix")),
"iv" = list(
"entry.compartment" = "Aven",
"dose.type" = "add",
"dosing.params" = c("initial.dose",
"dosing.matrix"))
)
# ORDERED LIST of state variables (must match Model variables:
# States in C code, each of which is associated with a differential equation),
# mostly calculated in amounts, though AUC (area under plasma concentration
# curve) also appears here:
model.list[[THIS.MODEL]]$state.vars <- c(
"Agutlumen",
"Agut",
"Aliver",
"Aven",
"Alung",
"Aart",
"Arest",
"Akidney",
"Atubules",
"Ametabolized",
"AUC"
)
# Actual (intrinsic) units assigned to each of the time dependent
# variables of the model system including state variables and any transformed
# outputs (for example, concentrations calculated from amounts.)
# AUC values should also be included.
model.list[[THIS.MODEL]]$compartment.units <- c(
"Agutlumen"="umol",
"Agut"="umol",
"Aliver"="umol",
"Aven"="umol",
"Alung"="umol",
"Aart"="umol",
"Arest"="umol",
"Akidney"="umol",
"Atubules"="umol",
"Ametabolized"="umol",
"Cgut"="uM",
"Cliver"="uM",
"Cven"="uM",
"Clung"="uM",
"Cart"="uM",
"Crest"="uM",
"Ckidney"="uM",
"Cplasma"="uM",
"Aplasma"="umol",
"AUC"="uM*days",
"c_BW" = "kg",
"c_Clmetabolism" = "L/h",
"c_hematocrit" = "%",
"c_Krest2pu" = "unitless",
"c_Qcardiac" = "L/h",
"c_Qgfr" = "L/h",
"c_Qgut" = "L/h",
"c_Qkidney" = "L/h",
"c_Qliver" = "L/h",
"c_Qrest" = "L/h",
"c_Vart" = "L",
"c_Vgut" = "L",
"c_Vkidney" = "L",
"c_Vliver" = "L",
"c_Vlung" = "L",
"c_Vrest" = "L",
"c_Vven" = "L"
)
# Compartment state of matter, needed for proper unit conversion, if all
# comaprtments of the same only include one state and set it to "all":
model.list[[THIS.MODEL]]$compartment.state <- list(liquid="all")
#Parameters needed to make a prediction (this is used by get_cheminfo):
model.list[[THIS.MODEL]]$required.params <- c(
"Clint",
"Funbound.plasma",
"Pow",
"pKa_Donor",
"pKa_Accept",
"MW"
)
# Function for calculating Clmetabolismc after Clint is varied:
model.list[[THIS.MODEL]]$propagateuv.func <- "propagate_invitrouv_pbtk"
# If httk-pop is enabled:
# Function for converting httk-pop physiology to model parameters:
model.list[[THIS.MODEL]]$convert.httkpop.func <- NULL
# We want all the standard physiological calculations performed:
model.list[[THIS.MODEL]]$calc.standard.httkpop2httk <- TRUE
# These are the model parameters that are impacted by httk-pop:
model.list[[THIS.MODEL]]$httkpop.params <- c(
"BW",
"Fabsgut",
"hematocrit",
"liver.density",
"million.cells.per.gliver",
"Qcardiacc",
"Qgfrc",
"Qgutf",
"Qkidneyf",
"Qliverf",
"Rblood2plasma",
"Vartc",
"Vgutc",
"Vkidneyc",
"Vliverc",
"Vlungc",
"Vrestc",
"Vvenc")
# Do we need to recalculate partition coefficients when doing Monte Carlo?
model.list[[THIS.MODEL]]$calcpc <- TRUE
# Do we need to recalculate first pass metabolism when doing Monte Carlo?
model.list[[THIS.MODEL]]$firstpass <- FALSE
# Do we ignore the Fups where the value was below the limit of detection?
model.list[[THIS.MODEL]]$exclude.fup.zero <- TRUE
# These are the parameter names needed to describe steady-state dosing:
model.list[[THIS.MODEL]]$css.dosing.params <- list(
oral=c("hourly.dose"))
# Filter out volatile compounds with Henry's Law Constant Threshold
model.list[[THIS.MODEL]]$log.henry.threshold <- c(-4.5)
# Filter out compounds belonging to select chemical classes
model.list[[THIS.MODEL]]$chem.class.filt <- c("PFAS")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.