Nothing
## ----knitrPrep, include=FALSE, eval = TRUE------------------------------------
knitr::opts_chunk$set(echo = TRUE, fig.width=5, fig.height=4)
## ----clear_memory, eval = TRUE------------------------------------------------
rm(list=ls())
## ----runchunks, eval = TRUE---------------------------------------------------
# Set whether or not the following chunks will be executed (run):
execute.vignette <- FALSE
## ----load_libraries, eval=execute.vignette------------------------------------
# library(httk)
# library(gdata)
# library(ggplot2)
# library(viridis)
# library(censReg)
# library(gmodels)
# library(gplots)
# library(scales)
# library(colorspace)
# library(gridExtra)
## ----scientific.notation, eval = execute.vignette-----------------------------
# scientific_10 <- function(x) {
# out <- gsub("1e", "10^", scientific_format()(x))
# out <- gsub("\\+","",out)
# out <- gsub("10\\^01","10",out)
# out <- parse(text=gsub("10\\^00","1",out))
# }
## ----setuppctable, eval=execute.vignette--------------------------------------
# pc.table <- NULL
# pc.data <- subset(pc.data,fu != 0 & Exp_PC != 0 & Tissue %in% c("Adipose","Bone","Brain","Gut",
# "Heart","Kidney","Liver","Lung","Muscle","Skin","Spleen","Blood Cells") &
# tolower(Species) == 'rat' & !CAS %in% c('10457-90-6','5786-21-0','17617-23-1','69-23-8','2898-12-6',
# '57562-99-9','59-99-4','2955-38-6','155-97-5','41903-57-5','58-55-9','77-32-7','59-05-2','60-54-8'))
# cas.list <- get_cheminfo(model='schmitt',species='rat',suppress.messages=TRUE)
# cas.list <- cas.list[cas.list %in% pc.data[,'CAS']]
# ma.data.list <- subset(chem.physical_and_invitro.data,!is.na(logMA))[,'CAS']
# for(this.cas in cas.list){
# parameters <- parameterize_schmitt(
# chem.cas=this.cas,
# species='rat',
# suppress.messages=TRUE)
# init.parameters <- parameters
# charge <- calc_ionization(
# chem.cas=this.cas,
# pH=7.4)$fraction_charged
# if(!this.cas %in% ma.data.list){
# init.parameters$MA <- 10^(0.999831 - 0.016578*38.7 + 0.881721 * log10(parameters$Pow))
# }
# pcs <- predict_partitioning_schmitt(
# parameters=parameters,
# species='rat',
# regression=FALSE,
# suppress.messages=TRUE
# )
# init.pcs <- predict_partitioning_schmitt(
# parameters=init.parameters,
# species='rat',
# regression=FALSE,
# suppress.messages=TRUE)
# for(this.tissue in subset(pc.data,CAS==this.cas)[,'Tissue']){
# if(this.tissue == 'Blood Cells') this.pc <- 'rbc'
# else this.pc <- this.tissue
# pc.table <- rbind(pc.table,
# cbind(
# as.data.frame(this.cas),
# as.data.frame(this.tissue),
# as.data.frame(log10(
# init.pcs[[which(substr(names(init.pcs),
# 2,
# nchar(names(init.pcs))-3) ==
# tolower(this.pc))]] *
# init.parameters$Funbound.plasma)),
# as.data.frame(log10(
# pcs[[which(substr(names(pcs),
# 2,
# nchar(names(pcs))-3) ==
# tolower(this.pc))]] *
# parameters$unadjusted.Funbound.plasma)),
# as.data.frame(log10(
# init.pcs[[which(substr(names(init.pcs),
# 2,
# nchar(names(init.pcs))-3) ==
# tolower(this.pc))]] *
# init.parameters$unadjusted.Funbound.plasma)),
# as.data.frame(log10(
# pcs[[which(substr(names(pcs),
# 2,
# nchar(names(pcs))-3) == tolower(this.pc))]] *
# parameters$Funbound.plasma)),
# as.data.frame(log10(
# subset(pc.data,
# CAS==this.cas & Tissue==this.tissue)[,'Exp_PC'])),
# as.data.frame(subset(pc.data,
# CAS==this.cas & Tissue==this.tissue)[,'LogP']),
# as.data.frame(charge),
# as.data.frame(as.character(subset(pc.data,
# CAS == this.cas)[1,'A.B.N'])),
# as.data.frame(subset(pc.data,
# CAS == this.cas)[1,'fu'])))
# }
# }
# colnames(pc.table) <- c('CAS','Tissue',
# 'fup.correction',
# 'ma.correction',
# 'init.Predicted',
# 'Predicted',
# 'Experimental',
# 'logP',
# 'charge',
# 'type',
# 'fup')
# init.error <- pc.table[,'Experimental'] - pc.table[,'init.Predicted']
# fup.error <- pc.table[,'Experimental'] - pc.table[,'fup.correction']
# ma.error <- pc.table[,'Experimental'] - pc.table[,'ma.correction']
# final.error <- pc.table[,'Experimental'] - pc.table[,'Predicted']
# fup.improvement <- abs(init.error) - abs(fup.error)
# ma.improvement <- abs(init.error) - abs(ma.error)
# final.improvement <- abs(init.error) - abs(final.error)
# pc.table <- cbind(pc.table,fup.improvement,ma.improvement, final.improvement,
# final.error,init.error,ma.error,fup.error)
## ----KpFigures, eval=execute.vignette-----------------------------------------
# init.plot <- ggplot() +
# geom_point(data=pc.table,aes(10^(init.Predicted),10^(Experimental))) +
# geom_abline() +
# labs(y=expression(paste("Measured ",K[p])),
# x=expression(paste("Predicted ",K[p]))) +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16),
# plot.title=element_text(size=18,hjust = 0.5)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# ggtitle('(A)')
# print(init.plot)
# init.stats <- summary(lm(Experimental ~ init.Predicted,
# data=pc.table))
#
# final.plot <- ggplot() +
# geom_point(data=pc.table,aes(10^(Predicted),10^(Experimental))) +
# geom_abline() +
# labs(y=expression(paste("Measured ",K[p])),
# x=expression(paste("Predicted ",K[p]))) +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16),
# plot.title=element_text(size=18,hjust=0.5)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# ggtitle('(B)')
# print(final.plot)
# final.stats <- summary(lm(Experimental ~ Predicted,
# data=pc.table))
#
# fup.change.plot <- ggplot() +
# geom_point(data=pc.table[order(pc.table[,'fup.improvement'],decreasing=F),],
# aes(10^(fup.correction),10^(Experimental),color=fup.improvement)) +
# geom_abline() +
# labs(y=expression(paste("Measured ",K[p])),
# x=expression(paste("Predicted ",K[p])),color='Improvement') +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_color_viridis(direction=-1,option='inferno')
# print(fup.change.plot)
# fup.stats <- summary(lm(Experimental ~ fup.correction,
# data=pc.table))
#
# ma.subset <- subset(pc.table,!CAS %in% ma.data.list)
# ma.change.plot <- ggplot() +
# geom_point(data=ma.subset[order(ma.subset[,'ma.improvement']
# ,decreasing=F),],
# aes(10^(ma.correction),10^(Experimental),color=ma.improvement)) +
# geom_abline() +
# labs(y=expression(paste("Measured ",K[p])),
# x=expression(paste("Predicted ",K[p])),color='Improvement') +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,10^4.5)) +
# scale_color_viridis(direction=-1,option='inferno')
# print(ma.change.plot)
# ma.stats <- summary(lm(Experimental ~ ma.correction,
# data=ma.subset))
#
# fup.table <- data.frame(Test=c("Initial Tissue PC Accuracy","Fup Lipid Correction","Membrane Affinity","Final"),
# RSquared = signif(c(init.stats$adj.r.squared,
# fup.stats$adj.r.squared,
# ma.stats$adj.r.squared,
# final.stats$adj.r.squared),3),
# RMSLE = signif(c(mean(init.stats$residuals^2,na.rm=TRUE)^(1/2),
# mean(fup.stats$residuals^2,na.rm=TRUE)^(1/2),
# mean(ma.stats$residuals^2,na.rm=TRUE)^(1/2),
# mean(final.stats$residuals^2,na.rm=TRUE)^(1/2)),3)
# )
# knitr::kable(fup.table)
## ----performPCregressions, eval=execute.vignette------------------------------
# regressions <- NULL
#
# for(tissue in as.character(unique(pc.table[,'Tissue']))){
# fit <- lm(Experimental ~ Predicted ,data=subset(pc.table,Tissue==tissue))
# smry <- summary(fit)
# est <- estimable(fit, cm=diag(2), beta0=c(0,1), joint.test=TRUE)
# regressions <- rbind(regressions,cbind(tissue,as.data.frame(fit$coefficients[['(Intercept)']]),
# as.data.frame(fit$coefficients[['Predicted']]),
# as.data.frame(smry$coefficients[['Predicted','Pr(>|t|)']]),
# as.data.frame(smry$sigma),as.data.frame(smry$r.squared),
# as.data.frame(smry[[11]][1,1]),as.data.frame(smry[[11]][2,2]),
# as.data.frame(smry[[11]][1,2]),as.data.frame(smry$df[2]),as.data.frame(est[[3]])))
# }
# colnames(regressions) <- c('Tissue','Intercept','Slope','P-value','SE','R-squared',
# 'Int Var','Slp Var','Cov','df','estimable')
#
# for (this.col in 2:10) regressions[,this.col] <- signif(regressions[,this.col], 3)
# regressions <- regressions[order(regressions[,1]),]
#
# knitr::kable(regressions, caption = "Table 1: The regressions for each tissue, after fup and membrane affinity adjustments, of the log10-transformed measured Kp regressed on
# predicted Kp")
#
# write.table(regressions,
# file=paste0("Pearce2017PCCalibration=",Sys.Date(),".txt"),
# sep="/t",
# row.names=FALSE)
## ----PCRegressionFigure, eval=execute.vignette--------------------------------
# x.cf <- seq(-2,3.5,.01)
# for(tissue in as.character(unique(pc.table[,'Tissue'])))
# {
# conf <- qt(0.975,df=subset(regressions,Tissue==tissue)[['df']]+1) *
# subset(regressions,Tissue==tissue)[['SE']] *
# sqrt(subset(regressions,Tissue==tissue)[['Int Var']] +
# x.cf^2 * subset(regressions,Tissue==tissue)[['Slp Var']] +
# 2 * x.cf * subset(regressions,Tissue==tissue)[['Cov']] + 1)
# line <- subset(regressions,Tissue==tissue)[['Intercept']] +
# x.cf * subset(regressions,Tissue==tissue)[['Slope']]
# y.cf <- line + conf
# y.ncf <- line - conf
#
# cf <- cbind(as.data.frame(x.cf),as.data.frame(y.cf),as.data.frame(y.ncf))
# if(tissue == 'Blood Cells'){
# eval(parse(text= paste('Blood <- ggplot() +
# geom_abline(linetype = "dashed") +
# geom_point(data=subset(pc.table,Tissue == \'',tissue,'\'),aes(10^(Predicted),
# 10^(Experimental))) + theme(axis.text=element_text(size=14),
# axis.title=element_text(size=14),plot.title=element_text(size=14)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,1000)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,1000)) +
# ylab(ifelse(tissue=="Brain",expression(paste("Inferred ",K[p])),"")) +
# xlab(ifelse(tissue=="Skin", expression(paste("Predicted ",K[p])),"")) +
# geom_line(data=cf,aes(10^(x.cf),10^(y.cf))) +
# geom_line(data=cf,aes(10^(x.cf),10^(y.ncf))) +
# geom_abline(intercept=subset(regressions,Tissue==tissue)[[\'Intercept\']],
# slope=subset(regressions,Tissue==tissue)[[\'Slope\']]) +
# ggtitle(\'Red Blood Cells\')',sep='')))
# }else{
# eval(parse(text= paste(tissue,' <- ggplot() + labs(y=expression(paste("Measured ",K[p]))
# ,x=expression(paste("Predicted ",K[p]))) + geom_abline(linetype = "dashed") +
# geom_point(data=subset(pc.table,Tissue == \'',tissue,'\'),
# aes(10^(Predicted),10^(Experimental))) + theme(axis.text=element_text(size=14),
# axis.title=element_text(size=14),plot.title=element_text(size=14)) +
# scale_x_log10(label=scientific_10,limits=c(0.01,1000)) +
# scale_y_log10(label=scientific_10,limits=c(0.01,1000)) +
# ylab(ifelse(tissue=="Brain",expression(paste("Inferred ",K[p])),"")) +
# xlab(ifelse(tissue=="Skin", expression(paste("Predicted ",K[p])),"")) +
# geom_line(data=cf,aes(10^(x.cf),10^(y.cf))) +
# geom_line(data=cf,aes(10^(x.cf),10^(y.ncf))) +
# geom_abline(intercept=subset(regressions,Tissue==tissue)[[\'Intercept\']],
# slope=subset(regressions,Tissue==tissue)[[\'Slope\']]) +
# ggtitle(\'',tissue,'\')',sep='')))
# }
# }
#
# grid.arrange(Adipose, Blood, Bone, Brain, Gut, Heart, Kidney, Liver, Lung, Muscle, Skin, Spleen, nrow=4)
## ----Vdevalaution, eval=execute.vignette--------------------------------------
# obach <- subset(Obach2008,CAS %in% get_cheminfo(model='schmitt'))
# vd.table <- NULL
#
# for(this.cas in obach[,'CAS']){
# parameters <- parameterize_schmitt(
# chem.cas=this.cas,
# suppress.messages=TRUE)
# init.parameters <- parameters
# if(!this.cas %in% ma.data.list){
# init.parameters$MA <- 10^(0.999831 - 0.016578*37 + 0.881721 * log10(parameters$Pow))
# }
# pcs <- predict_partitioning_schmitt(
# parameters=parameters,
# regression=FALSE,
# suppress.messages=TRUE)
# init.pcs <- predict_partitioning_schmitt(
# parameters=init.parameters,
# regression=FALSE,
# suppress.messages=TRUE)
# reg.pcs <- predict_partitioning_schmitt(
# parameters=parameters,
# regression=TRUE,
# suppress.messages=TRUE)
# vdist <- calc_vdist(
# parameters=c(pcs,Funbound.plasma=parameters$Funbound.plasma),
# suppress.messages=TRUE)
# init.vdist <- calc_vdist(
# parameters=c(
# init.pcs,
# Funbound.plasma=parameters$unadjusted.Funbound.plasma),
# suppress.messages = TRUE)
# reg.vdist <- calc_vdist(
# parameters=c(reg.pcs,Funbound.plasma=parameters$Funbound.plasma),
# suppress.messages = TRUE)
# vd.table <- rbind(
# vd.table,
# cbind(as.data.frame(this.cas),as.data.frame(log10(init.vdist)),
# as.data.frame(log10(vdist)),as.data.frame(log10(reg.vdist)),
# as.data.frame(log10(subset(obach,CAS==this.cas)[['VDss (L/kg)']]))))
# }
# colnames(vd.table) <- c(
# 'CAS',
# 'init.vdist',
# 'corrected.vdist',
# 'calibrated.vdist',
# 'Experimental')
# init.error <- vd.table[,'Experimental'] - vd.table[,'init.vdist']
# correction.error <- vd.table[,'Experimental'] - vd.table[,'corrected.vdist']
# calibration.error <- vd.table[,'Experimental'] - vd.table[,'calibrated.vdist']
# correction.improvement <- abs(init.error) - abs(correction.error)
# calibration.improvement <- abs(correction.error) - abs(calibration.error)
# vd.table <- cbind(vd.table,correction.improvement,calibration.improvement,
# init.error,correction.error,calibration.error)
## ----VdistRegressions, eval=execute.vignette----------------------------------
# fit <- lm(Experimental ~ calibrated.vdist,data=vd.table)
# smry <- summary(fit)
# calibrated.reg <- cbind(as.data.frame(fit$coefficients['(Intercept)']),
# as.data.frame(fit$coefficients['calibrated.vdist']),
# as.data.frame(smry$coefficients['calibrated.vdist','Pr(>|t|)']),
# as.data.frame(smry$sigma),as.data.frame(smry$r.squared))
# fit <- lm(Experimental ~ init.vdist,data=vd.table)
# smry <- summary(fit)
# init.reg <- cbind(as.data.frame(fit$coefficients['(Intercept)']),
# as.data.frame(fit$coefficients['init.vdist']),
# as.data.frame(smry$coefficients['init.vdist','Pr(>|t|)']),
# as.data.frame(smry$sigma),as.data.frame(smry$r.squared))
# fit <- lm(Experimental ~ corrected.vdist,data=vd.table)
# smry <- summary(fit)
# corrected.reg <- cbind(as.data.frame(fit$coefficients['(Intercept)']),
# as.data.frame(fit$coefficients['corrected.vdist']),
# as.data.frame(smry$coefficients['corrected.vdist','Pr(>|t|)']),
# as.data.frame(smry$sigma),as.data.frame(smry$r.squared))
# colnames(init.reg) <- colnames(corrected.reg) <-
# colnames(calibrated.reg) <- c('Intercept','Slope','P-value','Std Err','R-squared')
## ----VdistPlots, eval=execute.vignette----------------------------------------
# init.vd.plot <- ggplot(vd.table,aes(10^(init.vdist),10^(Experimental))) + geom_point() +
# geom_abline(intercept = init.reg[['Intercept']], slope = init.reg[["Slope"]]) +
# geom_abline(linetype = "dashed") + xlab("Predicted Volume of Distribution") +
# ylab("Measured Volume of Distribution") + theme(axis.text=element_text(size=16),
# axis.title=element_text(size=16),plot.title=element_text(size=18,hjust = 0.5)) +
# scale_x_log10(label=scientific_10,limits=c(10^(-1.5),10^(8.5))) +
# scale_y_log10(label=scientific_10,limits=c(10^(-1.5),10^(8.5))) +
# ggtitle('(A)')
# print(init.vd.plot)
#
# correction.plot <- ggplot() +
# geom_point(data=vd.table[order(vd.table[,'correction.improvement'],decreasing=F),],
# aes(10^(corrected.vdist),10^(Experimental),color=correction.improvement)) +
# geom_abline(intercept = corrected.reg[['Intercept']],slope = corrected.reg[["Slope"]]) +
# geom_abline(linetype = "dashed") + xlab("Predicted Volume of Distribution") +
# ylab("Measured Volume of Distribution") + theme(legend.position = c(.95, .95),
# legend.justification = c("right", "top"),legend.box.just = "right",
# legend.margin = margin(6, 6, 6, 6),axis.text=element_text(size=16),
# axis.title=element_text(size=16),plot.title=element_text(size=18,hjust = 0.5)) +
# scale_x_log10(limits=c(10^(-1.5),10^(3))) + scale_y_log10(limits=c(10^(-1.5),10^(3))) +
# ggtitle('(B)') + scale_color_viridis(direction=-1,option='inferno')
# print(correction.plot)
#
# calibration.plot <- ggplot() +
# geom_point(data=vd.table[order(vd.table[,'calibration.improvement'],decreasing=F),],
# aes(10^(calibrated.vdist),10^(Experimental),color=calibration.improvement)) +
# geom_abline(intercept = calibrated.reg[['Intercept']],slope = calibrated.reg[["Slope"]]) +
# geom_abline(linetype = "dashed") + xlab("Predicted Volume of Distribution") +
# ylab("Measured Volume of Distribution") + theme(legend.position = c(.95, .95),
# legend.justification = c("right", "top"),legend.box.just = "right",
# legend.margin = margin(6, 6, 6, 6),axis.text=element_text(size=16),
# axis.title=element_text(size=16),plot.title=element_text(size=18,hjust = 0.5)) +
# scale_x_log10(limits=c(10^(-1.5),10^(3))) + scale_y_log10(limits=c(10^(-1.5),10^(3))) +
# ggtitle('(C)') + scale_color_viridis(direction=-1,option='inferno')
# print(calibration.plot)
## ----bloodtoplasmaevaluation, eval=execute.vignette---------------------------
# rb2p.data <- subset(chem.physical_and_invitro.data,!is.na(Human.Rblood2plasma))
# measured.rb2p <- NULL
# measured.krbc <- NULL
# predicted.rb2p <- NULL
# predicted.krbc <- NULL
# cas <- NULL
# charge <- NULL
# fup <- NULL
# logP <- NULL
# pka_donor <- NULL
# pka_accept <- NULL
# for(this.cas in rb2p.data[rb2p.data[,'CAS'] %in%
# get_cheminfo(model='schmitt', suppress.messages = TRUE),'CAS'])
# {
# rb2p <- get_rblood2plasma(chem.cas=this.cas)
# krbc <- (rb2p + .44 - 1) / 0.44
# measured.rb2p <- c(measured.rb2p,rb2p)
# measured.krbc <- c(measured.krbc,krbc)
# parameters <- parameterize_schmitt(
# chem.cas=this.cas,
# suppress.messages = TRUE)
# pcs <- predict_partitioning_schmitt(
# parameters=parameters,
# suppress.messages=TRUE)
# predicted.krbc <- c(predicted.krbc,pcs[['Krbc2pu']] * parameters$Funbound.plasma)
# cas <- c(cas,this.cas)
# charge <- c(charge,calc_ionization(chem.cas=this.cas,pH=7.4)$fraction_charged)
# fup <- c(fup,parameters$unadjusted.Funbound.plasma)
# logP <- c(logP,log10(parameters$Pow))
# pka_donor <- c(pka_donor,paste(parameters$pKa_Donor,collapse=','))
# pka_accept <- c(pka_accept,paste(parameters$pKa_Accept,collapse=','))
# }
# predicted.rb2p <- 1 - 0.44 + 0.44 * predicted.krbc
# rb2p.table <- cbind(as.data.frame(cas),as.data.frame(predicted.rb2p),as.data.frame(measured.rb2p))
# colnames(rb2p.table) <- c('cas','predicted.rb2p','measured.rb2p')
# error <- log10(rb2p.table[,'measured.rb2p']) - log10(rb2p.table[,'predicted.rb2p'])
# rb2p.table <- cbind(rb2p.table,error,charge,fup,logP)
#
# error <- log10(measured.krbc) - log10(predicted.krbc)
# krbc.table <- cbind(as.data.frame(cas),as.data.frame(predicted.krbc),as.data.frame(measured.krbc),
# as.data.frame(error),charge,fup,logP,pka_donor,pka_accept)
## ----RBCStats, eval=execute.vignette------------------------------------------
# pdta <- data.frame(x = predicted.krbc,
# y = measured.krbc)
# pdta$y[pdta$y <= 0.1] <- 0.1
# pdta$Censoring <- factor(c("Not Censored","Censored")[as.numeric(pdta$y <= 0.1) + 1])
# y <- measured.krbc
# x <- cbind(rep(1, length(y)),-1 * log10(predicted.krbc))
# colnames(x) <- c("Intercept","Predicted")
# cc <- as.numeric(y <= 0.1)
# y[y < 0.1] <- 0.1
# y <- -log10(y)
#
# out <- censReg(y~x, data = pdta, left=0.1)
# out$betas <- out$estimate
## ----RBCFigure, eval=execute.vignette-----------------------------------------
# censored.regression <- ggplot() +
# geom_point(data=pdta,aes(x=x,y=y, color=Censoring)) +
# scale_x_log10(limits=c(.0009,40)) + scale_y_log10(limits=c(.1,4),breaks=c(.1,.5,2.5)) +
# labs(y=expression(paste("Inferred ",K[p])),x=expression(paste("Predicted ",K[p]))) +
# geom_abline(intercept=0, slope=1, linetype='dashed') +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16),
# plot.title=element_text(size=18,hjust=0.5),legend.position = c(0.11, .8)) +
# geom_abline(slope=out$betas[2],intercept=-out$betas[1]) + ggtitle('(B)')
# print(censored.regression)
#
# rb2p.plot <- ggplot(rb2p.table,aes(predicted.rb2p,measured.rb2p)) +
# geom_point() + scale_x_log10(lim=c(.52,18)) +
# scale_y_log10(lim=c(.52,2.5),breaks=c(0.5,1,2)) + geom_abline(linetype='dashed') +
# labs(y=expression(paste("Measured Whole Blood ",K[p])),
# x=expression(paste("Predicted Whole Blood ",K[p]))) +
# theme(axis.text=element_text(size=16),axis.title=element_text(size=16),
# plot.title=element_text(size=18,hjust=0.5)) + ggtitle('(A)')
# print(rb2p.plot)
## ----summarytable, eval=execute.vignette--------------------------------------
# heatmap.table <- NULL
# for(this.cas in get_cheminfo(model='schmitt')){
# parms <- parameterize_schmitt(
# chem.cas=this.cas,
# suppress.messages = TRUE)
# pcs <- predict_partitioning_schmitt(
# parameters=parms,
# suppress.messages = TRUE)
# heatmap.table <- cbind(heatmap.table,log10(unlist(pcs)[1:11]*parms$Funbound.plasma))
# }
# rownames(heatmap.table) <- c('Adipose','Bone','Brain','Gut','Heart',
# 'Kidney','Liver','Lung','Muscle','Skin','Spleen')
# colnames(heatmap.table) <- rep("",dim(heatmap.table)[2])
## ----summaryheatmap, eval=execute.vignette------------------------------------
# pal <- function (n, h = c(260, -328), c = 80, l = c(30, 100), power = 1.5,
# fixup = TRUE, gamma = NULL, alpha = 1, ...)
# {
# if (!is.null(gamma))
# warning("'gamma' is deprecated and has no effect")
# if (n < 1L)
# return(character(0L))
# h <- rep(h, length.out = 2L)
# c <- c[1L]
# l <- rep(l, length.out = 2L)
# power <- rep(power, length.out = 2L)
# rval <- seq(1, -1, length = n)
# rval <- hex(polarLUV(L = l[2L] - diff(l) * abs(rval)^power[2L],
# C = c * abs(rval)^power[1L], H = ifelse(rval > 0, h[1L],
# h[2L])), fixup = fixup, ...)
# if (!missing(alpha)) {
# alpha <- pmax(pmin(alpha, 1), 0)
# alpha <- format(as.hexmode(round(alpha * 255 + 1e-04)),
# width = 2L, upper.case = TRUE)
# rval <- paste(rval, alpha, sep = "")
# }
# return(rval)
# }
#
# hclust.ave <- function(x) hclust(x, method="ward.D2")
# heatmap.2(heatmap.table,col=pal,trace="none", hclustfun=hclust.ave,
# key.xlab=expression(paste("log10 ",K[p]," Value")),
# key.ylab=expression(paste("Number of ",K[p])),
# key.title="Partition Coefficient",xlab="Chemicals",cex.lab=2,margins=c(2,5))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.