Nothing
## ----knitrPrep, include=FALSE, eval = TRUE------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = '#>', fig.width=5, fig.height=3)
## ----clear_memory, eval = TRUE------------------------------------------------
rm(list=ls())
## ----runchunks, eval = TRUE---------------------------------------------------
# Set whether or not the following chunks will be executed (run):
execute.vignette <- FALSE
## ----load_packages, eval = execute.vignette-----------------------------------
# library(scales)
# library(ggplot2)
# library(data.table)
# library(httk)
# library(RColorBrewer)
# library(grid)
# library(gplots)
## ----plot_funcs, eval = execute.vignette--------------------------------------
# # Multiple plot function
# #
# # ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# # - cols: Number of columns in layout
# # - layout: A matrix specifying the layout. If present, 'cols' is ignored.
# #
# # If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# # then plot 1 will go in the upper left, 2 will go in the upper right, and
# # 3 will go all the way across the bottom.
# #
# multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL, widths=unit(rep_len(1, cols), "null")) {
#
# # Make a list from the ... arguments and plotlist
# plots <- c(list(...), plotlist)
#
# numPlots = length(plots)
#
# # If layout is NULL, then use 'cols' to determine layout
# if (is.null(layout)) {
# # Make the panel
# # ncol: Number of columns of plots
# # nrow: Number of rows needed, calculated from # of cols
# layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
# ncol = cols, nrow = ceiling(numPlots/cols))
# }
#
# if (numPlots==1) {
# print(plots[[1]])
#
# } else {
# # Set up the page
# grid.newpage()
# pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout),widths=widths)))
#
# # Make each plot, in the correct location
# for (i in 1:numPlots) {
# # Get the i,j matrix positions of the regions that contain this subplot
# matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
#
# print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
# layout.pos.col = matchidx$col))
# }
# }
# }
#
# scientific_10 <- function(x) {
# out <- gsub("1e", "10^", scientific_format()(x))
# out <- gsub("\\+","",out)
# out <- gsub("10\\^01","10",out)
# out <- parse(text=gsub("10\\^00","1",out))
# }
#
#
# lm_R2 <- function(m,prefix=NULL){
# out <- substitute("MSE = "~mse*","~~italic(R)^2~"="~r2,
# list(mse = signif(mean(m$residuals^2),3),
# r2 = format(summary(m)$adj.r.squared, digits = 2)))
# paste(prefix,as.character(as.expression(out)))
# }
#
# heatmap.3 <- function(x,
# Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE,
# distfun = dist,
# hclustfun = hclust,
# dendrogram = c("both","row", "column", "none"),
# symm = FALSE,
# scale = c("none","row", "column"),
# na.rm = TRUE,
# revC = identical(Colv,"Rowv"),
# add.expr,
# breaks,
# symbreaks = max(x < 0, na.rm = TRUE) || scale != "none",
# col = "heat.colors",
# colsep,
# rowsep,
# sepcolor = "white",
# sepwidth = c(0.05, 0.05),
# cellnote,
# notecex = 1,
# notecol = "cyan",
# na.color = par("bg"),
# trace = c("none", "column","row", "both"),
# tracecol = "cyan",
# hline = median(breaks),
# vline = median(breaks),
# linecol = tracecol,
# margins = c(5,5),
# ColSideColors,
# RowSideColors,
# side.height.fraction=0.3,
# cexRow = 0.2 + 1/log10(nr),
# cexCol = 0.2 + 1/log10(nc),
# labRow = NULL,
# labCol = NULL,
# key = TRUE,
# keysize = 1.5,
# density.info = c("none", "histogram", "density"),
# denscol = tracecol,
# symkey = max(x < 0, na.rm = TRUE) || symbreaks,
# densadj = 0.25,
# main = NULL,
# xlab = NULL,
# ylab = NULL,
# lmat = NULL,
# lhei = NULL,
# lwid = NULL,
# ColSideColorsSize = 1,
# RowSideColorsSize = 1,
# KeyValueName="Value",...){
#
# invalid <- function (x) {
# if (missing(x) || is.null(x) || length(x) == 0)
# return(TRUE)
# if (is.list(x))
# return(all(sapply(x, invalid)))
# else if (is.vector(x))
# return(all(is.na(x)))
# else return(FALSE)
# }
#
# x <- as.matrix(x)
# scale01 <- function(x, low = min(x), high = max(x)) {
# x <- (x - low)/(high - low)
# x
# }
# retval <- list()
# scale <- if (symm && missing(scale))
# "none"
# else match.arg(scale)
# dendrogram <- match.arg(dendrogram)
# trace <- match.arg(trace)
# density.info <- match.arg(density.info)
# if (length(col) == 1 && is.character(col))
# col <- get(col, mode = "function")
# if (!missing(breaks) && (scale != "none"))
# warning("Using scale=\"row\" or scale=\"column\" when breaks are",
# "specified can produce unpredictable results.", "Please consider using only one or the other.")
# if (is.null(Rowv) || is.na(Rowv))
# Rowv <- FALSE
# if (is.null(Colv) || is.na(Colv))
# Colv <- FALSE
# else if (Colv == "Rowv" && !isTRUE(Rowv))
# Colv <- FALSE
# if (length(di <- dim(x)) != 2 || !is.numeric(x))
# stop("`x' must be a numeric matrix")
# nr <- di[1]
# nc <- di[2]
# if (nr <= 1 || nc <= 1)
# stop("`x' must have at least 2 rows and 2 columns")
# if (!is.numeric(margins) || length(margins) != 2)
# stop("`margins' must be a numeric vector of length 2")
# if (missing(cellnote))
# cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x))
# if (!inherits(Rowv, "dendrogram")) {
# if (((!isTRUE(Rowv)) || (is.null(Rowv))) && (dendrogram %in%
# c("both", "row"))) {
# if (is.logical(Colv) && (Colv))
# dendrogram <- "column"
# else dedrogram <- "none"
# warning("Discrepancy: Rowv is FALSE, while dendrogram is `",
# dendrogram, "'. Omitting row dendogram.")
# }
# }
# if (!inherits(Colv, "dendrogram")) {
# if (((!isTRUE(Colv)) || (is.null(Colv))) && (dendrogram %in%
# c("both", "column"))) {
# if (is.logical(Rowv) && (Rowv))
# dendrogram <- "row"
# else dendrogram <- "none"
# warning("Discrepancy: Colv is FALSE, while dendrogram is `",
# dendrogram, "'. Omitting column dendogram.")
# }
# }
# if (inherits(Rowv, "dendrogram")) {
# ddr <- Rowv
# rowInd <- order.dendrogram(ddr)
# }
# else if (is.integer(Rowv)) {
# hcr <- hclustfun(distfun(x))
# ddr <- as.dendrogram(hcr)
# ddr <- reorder(ddr, Rowv)
# rowInd <- order.dendrogram(ddr)
# if (nr != length(rowInd))
# stop("row dendrogram ordering gave index of wrong length")
# }
# else if (isTRUE(Rowv)) {
# Rowv <- rowMeans(x, na.rm = na.rm)
# hcr <- hclustfun(distfun(x))
# ddr <- as.dendrogram(hcr)
# ddr <- reorder(ddr, Rowv)
# rowInd <- order.dendrogram(ddr)
# if (nr != length(rowInd))
# stop("row dendrogram ordering gave index of wrong length")
# }
# else {
# rowInd <- nr:1
# }
# if (inherits(Colv, "dendrogram")) {
# ddc <- Colv
# colInd <- order.dendrogram(ddc)
# }
# else if (identical(Colv, "Rowv")) {
# if (nr != nc)
# stop("Colv = \"Rowv\" but nrow(x) != ncol(x)")
# if (exists("ddr")) {
# ddc <- ddr
# colInd <- order.dendrogram(ddc)
# }
# else colInd <- rowInd
# }
# else if (is.integer(Colv)) {
# hcc <- hclustfun(distfun(if (symm)
# x
# else t(x)))
# ddc <- as.dendrogram(hcc)
# ddc <- reorder(ddc, Colv)
# colInd <- order.dendrogram(ddc)
# if (nc != length(colInd))
# stop("column dendrogram ordering gave index of wrong length")
# }
# else if (isTRUE(Colv)) {
# Colv <- colMeans(x, na.rm = na.rm)
# hcc <- hclustfun(distfun(if (symm)
# x
# else t(x)))
# ddc <- as.dendrogram(hcc)
# ddc <- reorder(ddc, Colv)
# colInd <- order.dendrogram(ddc)
# if (nc != length(colInd))
# stop("column dendrogram ordering gave index of wrong length")
# }
# else {
# colInd <- 1:nc
# }
# retval$rowInd <- rowInd
# retval$colInd <- colInd
# retval$call <- match.call()
# x <- x[rowInd, colInd]
# x.unscaled <- x
# cellnote <- cellnote[rowInd, colInd]
# if (is.null(labRow))
# labRow <- if (is.null(rownames(x)))
# (1:nr)[rowInd]
# else rownames(x)
# else labRow <- labRow[rowInd]
# if (is.null(labCol))
# labCol <- if (is.null(colnames(x)))
# (1:nc)[colInd]
# else colnames(x)
# else labCol <- labCol[colInd]
# if (scale == "row") {
# retval$rowMeans <- rm <- rowMeans(x, na.rm = na.rm)
# x <- sweep(x, 1, rm)
# retval$rowSDs <- sx <- apply(x, 1, sd, na.rm = na.rm)
# x <- sweep(x, 1, sx, "/")
# }
# else if (scale == "column") {
# retval$colMeans <- rm <- colMeans(x, na.rm = na.rm)
# x <- sweep(x, 2, rm)
# retval$colSDs <- sx <- apply(x, 2, sd, na.rm = na.rm)
# x <- sweep(x, 2, sx, "/")
# }
# if (missing(breaks) || is.null(breaks) || length(breaks) < 1) {
# if (missing(col) || is.function(col))
# breaks <- 16
# else breaks <- length(col) + 1
# }
# if (length(breaks) == 1) {
# if (!symbreaks)
# breaks <- seq(min(x, na.rm = na.rm), max(x, na.rm = na.rm),
# length = breaks)
# else {
# extreme <- max(abs(x), na.rm = TRUE)
# breaks <- seq(-extreme, extreme, length = breaks)
# }
# }
# nbr <- length(breaks)
# ncol <- length(breaks) - 1
# if (class(col) == "function")
# col <- col(ncol)
# min.breaks <- min(breaks)
# max.breaks <- max(breaks)
# x[x < min.breaks] <- min.breaks
# x[x > max.breaks] <- max.breaks
# if (missing(lhei) || is.null(lhei))
# lhei <- c(keysize, 4)
# if (missing(lwid) || is.null(lwid))
# lwid <- c(keysize, 4)
# if (missing(lmat) || is.null(lmat)) {
# lmat <- rbind(4:3, 2:1)
#
# if (!missing(ColSideColors)) {
# #if (!is.matrix(ColSideColors))
# #stop("'ColSideColors' must be a matrix")
# if (!is.character(ColSideColors) || nrow(ColSideColors) != nc)
# stop("'ColSideColors' must be a matrix of nrow(x) rows")
# lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] + 1)
# #lhei <- c(lhei[1], 0.2, lhei[2])
# lhei=c(lhei[1], side.height.fraction*ColSideColorsSize/2, lhei[2])
# }
#
# if (!missing(RowSideColors)) {
# #if (!is.matrix(RowSideColors))
# #stop("'RowSideColors' must be a matrix")
# if (!is.character(RowSideColors) || ncol(RowSideColors) != nr)
# stop("'RowSideColors' must be a matrix of ncol(x) columns")
# lmat <- cbind(lmat[, 1] + 1, c(rep(NA, nrow(lmat) - 1), 1), lmat[,2] + 1)
# #lwid <- c(lwid[1], 0.2, lwid[2])
# lwid <- c(lwid[1], side.height.fraction*RowSideColorsSize/2, lwid[2])
# }
# lmat[is.na(lmat)] <- 0
# }
#
# if (length(lhei) != nrow(lmat))
# stop("lhei must have length = nrow(lmat) = ", nrow(lmat))
# if (length(lwid) != ncol(lmat))
# stop("lwid must have length = ncol(lmat) =", ncol(lmat))
# op <- par(no.readonly = TRUE)
# on.exit(par(op))
#
# layout(lmat, widths = lwid, heights = lhei, respect = FALSE)
#
# if (!missing(RowSideColors)) {
# if (!is.matrix(RowSideColors)){
# par(mar = c(margins[1], 0, 0, 0.5))
# image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE)
# } else {
# par(mar = c(margins[1], 0, 0, 0.5))
# rsc = t(RowSideColors[,rowInd, drop=FALSE])
# rsc.colors = matrix()
# rsc.names = names(table(rsc))
# rsc.i = 1
# for (rsc.name in rsc.names) {
# rsc.colors[rsc.i] = rsc.name
# rsc[rsc == rsc.name] = rsc.i
# rsc.i = rsc.i + 1
# }
# rsc = matrix(as.numeric(rsc), nrow = dim(rsc)[1])
# image(t(rsc), col = as.vector(rsc.colors), axes = FALSE)
# if (length(rownames(RowSideColors)) > 0) {
# axis(1, 0:(dim(rsc)[2] - 1)/max(1,(dim(rsc)[2] - 1)), rownames(RowSideColors), las = 2, tick = FALSE)
# }
# }
# }
#
# if (!missing(ColSideColors)) {
#
# if (!is.matrix(ColSideColors)){
# par(mar = c(0.5, 0, 0, margins[2]))
# image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE)
# } else {
# par(mar = c(0.5, 0, 0, margins[2]))
# csc = ColSideColors[colInd, , drop=FALSE]
# csc.colors = matrix()
# csc.names = names(table(csc))
# csc.i = 1
# for (csc.name in csc.names) {
# csc.colors[csc.i] = csc.name
# csc[csc == csc.name] = csc.i
# csc.i = csc.i + 1
# }
# csc = matrix(as.numeric(csc), nrow = dim(csc)[1])
# image(csc, col = as.vector(csc.colors), axes = FALSE)
# if (length(colnames(ColSideColors)) > 0) {
# axis(2, 0:(dim(csc)[2] - 1)/max(1,(dim(csc)[2] - 1)), colnames(ColSideColors), las = 2, tick = FALSE)
# }
# }
# }
#
# par(mar = c(margins[1], 0, 0, margins[2]))
# x <- t(x)
# cellnote <- t(cellnote)
# if (revC) {
# iy <- nr:1
# if (exists("ddr"))
# ddr <- rev(ddr)
# x <- x[, iy]
# cellnote <- cellnote[, iy]
# }
# else iy <- 1:nr
# image(1:nc, 1:nr, x, xlim = 0.5 + c(0, nc), ylim = 0.5 + c(0, nr), axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks, ...)
# retval$carpet <- x
# if (exists("ddr"))
# retval$rowDendrogram <- ddr
# if (exists("ddc"))
# retval$colDendrogram <- ddc
# retval$breaks <- breaks
# retval$col <- col
# if (!invalid(na.color) & any(is.na(x))) { # load library(gplots)
# mmat <- ifelse(is.na(x), 1, NA)
# image(1:nc, 1:nr, mmat, axes = FALSE, xlab = "", ylab = "",
# col = na.color, add = TRUE)
# }
# axis(1, 1:nc, labels = labCol, las = 2, line = -0.5, tick = 0,
# cex.axis = cexCol)
# if (!is.null(xlab))
# mtext(xlab, side = 1, line = margins[1] - 1.25)
# axis(4, iy, labels = labRow, las = 2, line = -0.5, tick = 0,
# cex.axis = cexRow)
# if (!is.null(ylab))
# mtext(ylab, side = 4, line = margins[2] - 1.25)
# if (!missing(add.expr))
# eval(substitute(add.expr))
# if (!missing(colsep))
# for (csep in colsep) rect(xleft = csep + 0.5, ybottom = rep(0, length(csep)), xright = csep + 0.5 + sepwidth[1], ytop = rep(ncol(x) + 1, csep), lty = 1, lwd = 1, col = sepcolor, border = sepcolor)
# if (!missing(rowsep))
# for (rsep in rowsep) rect(xleft = 0, ybottom = (ncol(x) + 1 - rsep) - 0.5, xright = nrow(x) + 1, ytop = (ncol(x) + 1 - rsep) - 0.5 - sepwidth[2], lty = 1, lwd = 1, col = sepcolor, border = sepcolor)
# min.scale <- min(breaks)
# max.scale <- max(breaks)
# x.scaled <- scale01(t(x), min.scale, max.scale)
# if (trace %in% c("both", "column")) {
# retval$vline <- vline
# vline.vals <- scale01(vline, min.scale, max.scale)
# for (i in colInd) {
# if (!is.null(vline)) {
# abline(v = i - 0.5 + vline.vals, col = linecol,
# lty = 2)
# }
# xv <- rep(i, nrow(x.scaled)) + x.scaled[, i] - 0.5
# xv <- c(xv[1], xv)
# yv <- 1:length(xv) - 0.5
# lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
# }
# }
# if (trace %in% c("both", "row")) {
# retval$hline <- hline
# hline.vals <- scale01(hline, min.scale, max.scale)
# for (i in rowInd) {
# if (!is.null(hline)) {
# abline(h = i + hline, col = linecol, lty = 2)
# }
# yv <- rep(i, ncol(x.scaled)) + x.scaled[i, ] - 0.5
# yv <- rev(c(yv[1], yv))
# xv <- length(yv):1 - 0.5
# lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
# }
# }
# if (!missing(cellnote))
# text(x = c(row(cellnote)), y = c(col(cellnote)), labels = c(cellnote),
# col = notecol, cex = notecex)
# par(mar = c(margins[1], 0, 0, 0))
# if (dendrogram %in% c("both", "row")) {
# plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none")
# }
# else plot.new()
# par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2]))
# if (dendrogram %in% c("both", "column")) {
# plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none")
# }
# else plot.new()
# if (!is.null(main))
# title(main, cex.main = 1.5 * op[["cex.main"]])
# if (key) {
# par(mar = c(5, 4, 2, 1), cex = 0.75)
# tmpbreaks <- breaks
# if (symkey) {
# max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
# min.raw <- -max.raw
# tmpbreaks[1] <- -max(abs(x), na.rm = TRUE)
# tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE)
# }
# else {
# min.raw <- min(x, na.rm = TRUE)
# max.raw <- max(x, na.rm = TRUE)
# }
#
# z <- seq(min.raw, max.raw, length = length(col))
# image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
# xaxt = "n", yaxt = "n")
# par(usr = c(0, 1, 0, 1))
# lv <- pretty(breaks)
# xv <- scale01(as.numeric(lv), min.raw, max.raw)
# axis(1, at = xv, labels = lv)
# if (scale == "row")
# mtext(side = 1, "Row Z-Score", line = 2)
# else if (scale == "column")
# mtext(side = 1, "Column Z-Score", line = 2)
# else mtext(side = 1, KeyValueName, line = 2)
# if (density.info == "density") {
# dens <- density(x, adjust = densadj, na.rm = TRUE)
# omit <- dens$x < min(breaks) | dens$x > max(breaks)
# dens$x <- dens$x[-omit]
# dens$y <- dens$y[-omit]
# dens$x <- scale01(dens$x, min.raw, max.raw)
# lines(dens$x, dens$y/max(dens$y) * 0.95, col = denscol,
# lwd = 1)
# axis(2, at = pretty(dens$y)/max(dens$y) * 0.95, pretty(dens$y))
# title("Color Key\nand Density Plot")
# par(cex = 0.5)
# mtext(side = 2, "Density", line = 2)
# }
# else if (density.info == "histogram") {
# h <- hist(x, plot = FALSE, breaks = breaks)
# hx <- scale01(breaks, min.raw, max.raw)
# hy <- c(h$counts, h$counts[length(h$counts)])
# lines(hx, hy/max(hy) * 0.95, lwd = 1, type = "s",
# col = denscol)
# axis(2, at = pretty(hy)/max(hy) * 0.95, pretty(hy))
# title("Color Key\nand Histogram")
# par(cex = 0.5)
# mtext(side = 2, "Count", line = 2)
# }
# else title("Color Key")
# }
# else plot.new()
# retval$colorTable <- data.frame(low = retval$breaks[-length(retval$breaks)],
# high = retval$breaks[-1], color = retval$col)
# invisible(retval)
# }
#
# myclust <- function(c)
# {
# hclust(c,method="average")
# }
#
# na.dist <- function(x,method="euclidian",...)
# {
# t.dist <- dist(x,...)
# t.dist <- as.matrix(t.dist)
# t.limit <- 1.1*max(t.dist,na.rm=TRUE)
# t.dist[is.na(t.dist)] <- t.limit
# t.dist <- as.dist(t.dist)
# return(t.dist)
# }
## ----fig3, eval = execute.vignette--------------------------------------------
# physprop.matrix <- chem.invivo.PK.aggregate.data[,c("MW",
# "logP",
# "WaterSol",
# "Neutral.pH74",
# "Positive.pH74",
# "Negative.pH74",
# "Clint",
# "Fup",
# "Vdist",
# "kelim",
# "kgutabs",
# "Fbio")]
# rnames <- chem.invivo.PK.aggregate.data$Compound
# rnames[rnames=="Bensulide"] <- c("Bensulide.Joint","Bensulide.NHEERL","Bensulide.RTI")
# rnames[rnames=="Propyzamide"] <- c("Propyzamide.Joint","Propyzamide.NHEERL","Propyzamide.RTI")
# rownames(physprop.matrix) <- rnames
#
# row.side.cols <- rep("Black",dim(physprop.matrix)[1])
# row.side.cols[sapply(chem.invivo.PK.aggregate.data$CAS,is.pharma)] <- "Grey"
#
# apply(physprop.matrix,2,function(x) mean(x,na.rm=TRUE))
# for (this.col in c(c(1,3,7,9:11),c(4:6,8,12))) physprop.matrix[,this.col] <- log10(10^-6+physprop.matrix[,this.col])
#
# physprop.matrix <- apply(physprop.matrix,2,function(x) (x-mean(x,na.rm=TRUE))/sd(x,na.rm=TRUE))
## ----PlotFigure3, eval = execute.vignette-------------------------------------
# main_title="in vivo Toxicokinetic Parameters"
# heatmap.2(physprop.matrix,
# hclustfun=myclust,
# Colv=FALSE,
# distfun=na.dist,
# na.rm = TRUE,
# scale="none",
# trace="none",
# RowSideColors=row.side.cols,
# col=brewer.pal(11,"Spectral"),
# margins=c(8,10))
# # The following has to be adjusted manually:
# rect(0.65, 0.01, 0.87, 0.78, border="blue")
# text(0.75,0.81,expression(paste("Estimated from ",italic("In Vivo")," Data")))
## ----Make FitData, eval = execute.vignette------------------------------------
# # Use joint analysis data from both labs:
# FitData <- subset(chem.invivo.PK.aggregate.data,Compound!="Bensulide"|Source=="Wambaugh et al. (2018), NHEERL/RTI")
# FitData <- subset(FitData,Compound!="Propyzamide"|Source=="Wambaugh et al. (2018), NHEERL/RTI")
# # Rename some columns to match original data files:
# FitData$Compound.abbrev <- FitData$Abbrev
# # Add a column indicating chemical type:
# FitData$Chemical <- "Other"
# FitData[sapply(FitData$CAS,is.pharma),"Chemical"] <- "Pharmaceutical"
## ----fig4, eval = execute.vignette--------------------------------------------
# # Get rid of chemicals with Fup < LOD:
# FitData.Fup <- subset(FitData,!(CAS%in%subset(chem.physical_and_invitro.data,Human.Funbound.plasma==0)$CAS))
#
# # Rename some columns to match original data files:
# FitData.Fup$SelectedVdist <- FitData.Fup$Vdist
# FitData.Fup$SelectedVdist.sd <- FitData.Fup$Vdist.sd
#
# #Predict volume of Distribution
# FitData.Fup$Vdist.1comp.pred <- sapply(FitData.Fup$CAS,
# function(x) suppressWarnings(calc_vdist(chem.cas=x,
# species="Rat",
# default.to.human = TRUE,
# suppress.messages=TRUE)))
# FitData.Fup$Vdist.1comp.pred.nocal <- sapply(FitData.Fup$CAS,
# function(x) suppressWarnings(calc_vdist(chem.cas=x,
# regression=FALSE,
# species="Rat",
# default.to.human = TRUE,
# suppress.messages=TRUE)))
#
# FigVdista.fit <- lm(log(SelectedVdist)~log(Vdist.1comp.pred),data=subset(FitData.Fup,!is.na(SelectedVdist)&!is.na(Vdist.1comp.pred)))
# summary(FigVdista.fit)
#
# FigVdista.fit.weighted <- lm(log(SelectedVdist)~log(Vdist.1comp.pred),data=subset(FitData.Fup,!is.na(SelectedVdist)&!is.na(Vdist.1comp.pred)),weights=1/SelectedVdist.sd^2)
# summary(FigVdista.fit)
#
# FigVdista.fit.pharm <- lm(log(SelectedVdist)~log(Vdist.1comp.pred),data=subset(FitData.Fup,Chemical!="Other"&!is.na(Vdist.1comp.pred)))
# summary(FigVdista.fit.pharm)
#
# FigVdista.fit.other <- lm(log(SelectedVdist)~log(Vdist.1comp.pred),data=subset(FitData.Fup,Chemical=="Other"&!is.na(Vdist.1comp.pred)))
# summary(FigVdista.fit.other)
#
# dim(subset(FitData.Fup,!is.na(SelectedVdist.sd)&!is.na(Vdist.1comp.pred)))[1]
#
# FigVdista <- ggplot(data=subset(FitData.Fup,!is.na(Vdist.1comp.pred))) +
# geom_segment(color="Grey",aes(x=Vdist.1comp.pred,y=exp(log(SelectedVdist)-SelectedVdist.sd),xend=Vdist.1comp.pred,yend=exp(log(SelectedVdist)+SelectedVdist.sd)))+
# geom_text(aes_string(y="SelectedVdist",
# x="Vdist.1comp.pred",
# label="Compound.abbrev",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(5*10^-2, 10^2)) +
# scale_x_log10(label=scientific_10,limits = c(5*10^-2, 10^2)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# annotate("text", x = 1*10^-1, y = 3*10^1, label = "A",size=6) +
# ylab(expression(paste(italic("In vivo")," estimated Volume of Distribution (L/kg)"))) +
# xlab(expression(paste("Calibrated ",italic("In vitro")," predicted ",V[d]," (L/kg)"))) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
# FigVdistb.fit <- lm(log(SelectedVdist)~log(Vdist.1comp.pred.nocal),data=subset(FitData.Fup,!is.na(Vdist.1comp.pred)))
# summary(FigVdistb.fit)
#
# FigVdistb.fit.weighted <- lm(log(SelectedVdist)~log(Vdist.1comp.pred.nocal),data=subset(FitData.Fup,!is.na(Vdist.1comp.pred)),weights=1/SelectedVdist.sd^2)
# summary(FigVdistb.fit)
#
# FigVdistb.fit.pharm <- lm(log(SelectedVdist)~log(Vdist.1comp.pred.nocal),data=subset(FitData.Fup,Chemical!="Other"&!is.na(Vdist.1comp.pred)))
# summary(FigVdistb.fit.pharm)
#
# FigVdistb.fit.other<- lm(log(SelectedVdist)~log(Vdist.1comp.pred.nocal),data=subset(FitData.Fup,Chemical=="Other"&!is.na(Vdist.1comp.pred)))
# summary(FigVdistb.fit.other)
#
# FigVdistb <- ggplot(data=subset(FitData.Fup,!is.na(Vdist.1comp.pred.nocal))) +
# geom_segment(color="Grey",aes(x=Vdist.1comp.pred.nocal,y=exp(log(SelectedVdist)-SelectedVdist.sd),xend=Vdist.1comp.pred.nocal,yend=exp(log(SelectedVdist)+SelectedVdist.sd)))+
# geom_text(aes_string(y="SelectedVdist",
# x="Vdist.1comp.pred.nocal",
# label="Compound.abbrev",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(5*10^-2, 10^2)) +
# scale_x_log10(label=scientific_10,limits = c(5*10^-2, 10^2)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# annotate("text", x = 1*10^-1, y = 3*10^1, label = "B",size=6) +
# ylab(expression(paste(italic("In vivo")," estimated Volume of Distribution (L/kg)"))) +
# xlab(expression(paste("Original ",italic("In vitro")," predicted ",V[d]," (L/kg)"))) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
#
# #dev.new(width=10,height=6)
# multiplot(FigVdista,FigVdistb,cols=2,widths=c(1.75,1.75))
#
#
# Fig4a.data <- subset(FitData.Fup,!is.na(SelectedVdist)&!is.na(Vdist.1comp.pred))
# Fig4a.MSE <- mean((log(Fig4a.data$Vdist.1comp.pred)-log(Fig4a.data$SelectedVdist))^2)
#
#
# Fig4b.data <- subset(FitData.Fup,!is.na(SelectedVdist)&!is.na(Vdist.1comp.pred.nocal))
# Fig4b.MSE <- mean((log(Fig4b.data$Vdist.1comp.pred.nocal)-log(Fig4b.data$SelectedVdist))^2)
#
#
## ----fig5, eval = execute.vignette--------------------------------------------
# #FitData.Fup$CLtot.1comp <- FitData.Fup$Vdist.1comp.meas*FitData.Fup$kelim.1comp.meas
# #FitData.Fup$CLtot.1comp.sd <- (FitData.Fup$Vdist.1comp.meas.sd^2+FitData.Fup$kelim.1comp.meas.sd^2)^(1/2)
# #FitData.Fup[is.na(CLtot.1comp.sd)]$CLtot.1comp.sd <- Inf
#
# #FitData.Fup[is.na(SelectedCLtot.sd)]$SelectedClearance.sd <- Inf
#
# FitData.Fup$SelectedCLtot <- FitData.Fup$Vdist*FitData.Fup$kelim
# FitData.Fup$SelectedCLtot.sd <- (FitData.Fup$Vdist.sd^2 +
# FitData.Fup$kelim.sd^2)^(1/2)
# FitData.Fup$CLtot.1comp.pred <- sapply(FitData.Fup$CAS,
# function(x) calc_total_clearance(chem.cas=x,
# species="Rat",
# default.to.human = TRUE,
# suppress.messages=TRUE))
#
# Fig.SelectedClearance.fit <- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,!is.na(SelectedCLtot.sd)))
# summary(Fig.SelectedClearance.fit)
# Fig.SelectedClearance.fit.weighted <- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,!is.na(SelectedCLtot.sd)),weights=1/SelectedCLtot.sd^2)
# summary(Fig.SelectedClearance.fit.weighted)
# Fig.SelectedClearance.fit.pharma <- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,Chemical!="Other"&!is.na(SelectedCLtot.sd)),weights=1/SelectedCLtot.sd^2)
# summary(Fig.SelectedClearance.fit.pharma)
# Fig.SelectedClearance.fit.other<- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,Chemical=="Other"&!is.na(SelectedCLtot.sd)),weights=1/SelectedCLtot.sd^2)
# summary(Fig.SelectedClearance.fit.other)
# Fig.SelectedClearance.fit.pharma <- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,Chemical!="Other"))
# summary(Fig.SelectedClearance.fit.pharma)
# Fig.SelectedClearance.fit.other<- lm(log(SelectedCLtot)~log(CLtot.1comp.pred),data=subset(FitData.Fup,Chemical=="Other"))
# summary(Fig.SelectedClearance.fit.other)
#
# Fig.SelectedClearance<- ggplot(data=FitData.Fup,aes(y=SelectedCLtot,x=CLtot.1comp.pred)) +
# geom_segment(data=subset(FitData.Fup,is.finite(SelectedCLtot.sd)),color="grey",aes(x=CLtot.1comp.pred,y=exp(log(SelectedCLtot)-SelectedCLtot.sd),xend=CLtot.1comp.pred,yend=exp(log(SelectedCLtot)+SelectedCLtot.sd)))+
# geom_text(aes_string(y="SelectedCLtot",
# x="CLtot.1comp.pred",
# label="Compound.abbrev",
# color="Chemical"))+
# # geom_point(data=twocomp.data,color="White",size=2,aes(shape=Source))+
# scale_y_log10(label=scientific_10,limits = c(10^-4, 10^3)) +
# scale_x_log10(label=scientific_10,limits = c(10^-4, 10^3)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# geom_line(aes(x = CLtot.1comp.pred, y = exp(Fig.SelectedClearance.fit.pharma$coefficients[1]+Fig.SelectedClearance.fit.pharma$coefficients[2]*log(CLtot.1comp.pred))), colour = "darkturquoise", linetype="dotted", size=1.5) +
# geom_line(aes(x = CLtot.1comp.pred, y = exp(Fig.SelectedClearance.fit.other$coefficients[1]+Fig.SelectedClearance.fit.other$coefficients[2]*log(CLtot.1comp.pred))), colour = "red", linetype="dashed", size=1.5) +
# ylab(expression(paste(italic("In vivo")," estimated clearance (mg/L/h)"))) +
# xlab(expression(paste(italic("In vitro")," predicted clearance (mg/L/h)"))) +
# theme_bw() +
# theme(legend.position="bottom")+
# annotate("text",x = 10^2/3/3/3, y = 3*3*10^-4,size=4, label = lm_R2(Fig.SelectedClearance.fit.pharma,prefix="Pharmaceutical:"),parse=TRUE)+
# annotate("text",x = 10^2/3/3/3, y = 3*3*3*10^-5,size=4, label = lm_R2(Fig.SelectedClearance.fit.other,prefix="Other:"),parse=TRUE)+
# theme(plot.margin = unit(c(1,1,1,1), "cm"))+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
# #dev.new(width=6,height=6)
# print(Fig.SelectedClearance)
#
# paste("with",with(FitData.Fup,sum(SelectedCLtot<CLtot.1comp.pred,na.rm=TRUE)),"chemicals over-estimated and",with(FitData.Fup,sum(SelectedCLtot>CLtot.1comp.pred,na.rm=TRUE)),"under-estimated")
#
## ----fig6, eval = execute.vignette--------------------------------------------
# FitData$Selectedkgutabs <- FitData$kgutabs
# # Cutoff from optimizer is 1000:
# Figkgutabs <- ggplot(subset(FitData,Selectedkgutabs<999), aes(Selectedkgutabs, fill = Chemical)) +
# geom_histogram(binwidth=0.5) +
# scale_x_log10(label=scientific_10) +
# ylab("Number of Chemicals")+
# xlab("Absorption Rate from Gut (1/h)")+
# theme_bw() +
# theme(legend.position="bottom")
#
# #dev.new(width=6,height=6)
# print(Figkgutabs)
#
# mean(subset(FitData,Selectedkgutabs<999)$Selectedkgutabs)
# min(subset(FitData,Selectedkgutabs<999)$Selectedkgutabs)
# max(subset(FitData,Selectedkgutabs<999)$Selectedkgutabs)
# median(subset(FitData,Selectedkgutabs<999)$Selectedkgutabs)
#
## ----fig7, eval = execute.vignette--------------------------------------------
# FitData$SelectedFbio <- FitData$Fbio
#
# FigFbioa <- ggplot(data=FitData) +
# geom_text(aes_string(y="SelectedFbio",
# x="Fbio.pred",
# label="Compound.abbrev",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits=c(10^-3,1)) +
# scale_x_log10(label=scientific_10,limits=c(10^-3,1)) +
# # xlim(0, 1)+
# # ylim(0, 1)+
# annotate("text", x = .015/10, y = 0.55, label = "A",size=6) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated Fraction Bioavailable"))) +
# xlab(expression(paste(italic("In silico")," predicted ",F[bio]))) +
# # scale_color_brewer(palette="Set2") +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
# FigFbiob <- ggplot(FitData, aes(SelectedFbio, fill = Chemical)) +
# geom_histogram(binwidth=0.5) +
# scale_x_log10(label=scientific_10,limits=c(10^-3,3)) +
# annotate("text", x = .001, y = 18, label = "B",size=6) +
# ylab("Number of Chemicals")+
# xlab(expression(paste(italic("In vivo")," estimated Fraction Bioavailable"))) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),fill=guide_legend(nrow=2,byrow=TRUE))
#
#
#
# #dev.new(width=10,height=6)
# multiplot(FigFbioa,FigFbiob,cols=2,widths=c(1.75,1.75))
#
# summary(lm(log(SelectedFbio)~log(Fbio.pred),data=FitData))
#
# paste("Fbio ranged from",signif(min(FitData[FitData$Chemical=="Pharmaceutical","SelectedFbio"],na.rm=TRUE),2),"to",signif(max(FitData[FitData$Chemical=="Pharmaceutical","SelectedFbio"],na.rm=TRUE),2),"for pharmaceutical compounds, but was observed to be as low as", signif(min(FitData[FitData$Chemical=="Other","SelectedFbio"],na.rm=TRUE),3),"for other compounds.")
#
# min(FitData$SelectedFbio,na.rm=TRUE)
## ----fig8, eval = execute.vignette--------------------------------------------
# FitData$SelectedFbio <- FitData$Fbio
# FitData$SelectedCss <- FitData$Css
# FitData$SelectedCss.sd <- FitData$Css.sd
# FitData$Css.1comp.pred <- sapply(FitData$CAS,
# function(x) calc_analytic_css(chem.cas=x,
# species="Rat",
# model="3compartmentss",
# suppress.messages=TRUE,
# parameterize.args = list(
# default.to.human=TRUE,
# adjusted.Funbound.plasma=TRUE,
# regression=TRUE,
# minimum.Funbound.plasma=1e-4)))
#
# Fig.1compCss.fit <- lm(log(SelectedCss)~log(Css.1comp.pred),data=FitData,na.rm=TRUE)
# Fig.1compCss.fit.weighted <- lm(log(SelectedCss)~log(Css.1comp.pred),data=FitData,na.rm=TRUE,weights=1/SelectedCss.sd^2)
# Fig.1compCss.fit.pharma <- lm(log(SelectedCss)~log(Css.1comp.pred),data=subset(FitData,Chemical!="Other"),na.rm=TRUE)
# Fig.1compCss.fit.other <- lm(log(SelectedCss)~log(Css.1comp.pred),data=subset(FitData,Chemical=="Other"),na.rm=TRUE)
#
# summary(Fig.1compCss.fit)
# summary(Fig.1compCss.fit.pharma)
# summary(Fig.1compCss.fit.other)
#
#
# textx <- 10^-3
# texty <- 1*10^1
#
# Fig.Cssa <- ggplot(data=FitData) +
# geom_segment(color="grey",aes(x=Css.1comp.pred,y=exp(log(SelectedCss)-SelectedCss.sd),xend=Css.1comp.pred,yend=exp(log(SelectedCss)+SelectedCss.sd)))+
# geom_text(size=4,aes_string(y="SelectedCss", x="Css.1comp.pred",label="Compound.abbrev",color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(5*10^-6, 110)) +
# scale_x_log10(label=scientific_10,limits = c(5*10^-6, 110)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated ",C[ss]," (mg/L)"))) +
# xlab(expression(paste(italic("In vitro")," predicted ",C[ss]," (mg/L)"))) +
# # scale_color_brewer(palette="Set2") +
# theme_bw() +
# theme(legend.position="bottom")+
# annotate("text", x = textx/15, y = 5*texty, label = "A",size=6) +
# annotate("text",x = textx, y = texty,size=6, label = lm_R2(Fig.1compCss.fit),parse=TRUE)+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
# # annotate("text",x = textx/3, y = texty/3,size=4, label = lm_R2(Fig.1compCss.fit.weighted,prefix="Weighted:"),parse=TRUE)
# # annotate("text",x = textx, y = texty,size=4, label = lm_R2(Fig.1compCss.fit.pharma,prefix="Pharmaceutical:"),parse=TRUE)
# # annotate("text",x = textx, y = texty/3,size=4, label = lm_R2(Fig.1compCss.fit.other,prefix="Other:"),parse=TRUE)
#
# FitData$Css.Bio <- FitData$Css.1comp.pred*FitData$SelectedFbio
# Fig.1compCssb.fit <- lm(log(SelectedCss)~log(Css.Bio),data=FitData,na.rm=TRUE)
# Fig.1compCssb.fit.weighted <- lm(log(SelectedCss)~log(Css.Bio),data=FitData,na.rm=TRUE,weights=1/SelectedCss.sd^2)
# Fig.1compCssb.fit.pharma <- lm(log(SelectedCss)~log(Css.Bio),data=subset(FitData,Chemical!="Other"),na.rm=TRUE)
# Fig.1compCssb.fit.other <- lm(log(SelectedCss)~log(Css.Bio),data=subset(FitData,Chemical=="Other"),na.rm=TRUE)
#
# Fig.Cssb <- ggplot(data=FitData) +
# geom_segment(color="grey",aes(x=Css.Bio,y=exp(log(SelectedCss)-SelectedCss.sd),xend=Css.Bio,yend=exp(log(SelectedCss)+SelectedCss.sd)))+
# geom_text(size=4,aes_string(y="SelectedCss", x="Css.Bio",label="Compound.abbrev",color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(5*10^-6, 110)) +
# scale_x_log10(label=scientific_10,limits = c(5*10^-6, 110)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated ",C[ss]," (mg/L)"))) +
# xlab(expression(paste(italic("In vitro")," predicted ",C[ss]," (mg/L) Using Measured ", F[bio]))) +
# # scale_color_brewer(palette="Set2") +
# theme_bw() +
# theme(legend.position="bottom")+
# annotate("text", x = textx/15, y = 5*texty, label = "B",size=6) +
# annotate("text",x = textx, y = texty,size=6, label = lm_R2(Fig.1compCssb.fit),parse=TRUE)+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
# #dev.new(width=10,height=6)
# multiplot(Fig.Cssa,Fig.Cssb,cols=2,widths=c(1.75,1.75))
#
#
## ----fig9, eval = execute.vignette--------------------------------------------
# FitData$TriageCat <- FitData$Triage.Call
# FitData$CssResidual <- log10(FitData$Css.1comp.pred/FitData$Css)
# FitData[FitData$TriageCat%in%c("Does Not Reach Steady State","Plasma Binding Assay Failed"),"TriageCat"]<-"Problem"
# FitData$TriageCat <- factor(FitData$TriageCat,levels=c(">10x Underestimated",">3.2x Underestimated","On the Order",">3.2x Overestimated",">10x Overestimated","Problem"))
#
#
# Fig.Triage <- ggplot(data=subset(FitData,!is.na(TriageCat)&is.finite(CssResidual))) +
# geom_text(size=4,aes_string(y="CssResidual", x="TriageCat",label="Compound.abbrev",color="Chemical"))+
# geom_segment(aes(x = factor(">10x Underestimated",levels=levels(FitData$TriageCat)), y = log10(1/10), xend = factor(">10x Underestimated",levels=levels(FitData$TriageCat)), yend = log10(1/30)), size=3,colour = "grey") +
# # geom_segment(aes(x = factor(">3.2x Underestimated",levels=levels(FitData$TriageCat)), y = log10(1/10), xend = factor(">3.2x Underestimated",levels=levels(FitData$TriageCat)), yend = log10(1/3.2)), size=3,colour = "grey") +
# geom_segment(aes(x = factor("On the Order",levels=levels(FitData$TriageCat)), y = log10(1/3.2), xend = factor("On the Order",levels=levels(FitData$TriageCat)), yend = log10(3.2)), size=3,colour = "grey") +
# geom_segment(aes(x = factor(">3.2x Overestimated",levels=levels(FitData$TriageCat)), y = log10(3.2), xend = factor(">3.2x Overestimated",levels=levels(FitData$TriageCat)), yend = log10(10)), size=3,colour = "grey") +
# geom_segment(aes(x = factor(">10x Overestimated",levels=levels(FitData$TriageCat)), y = log10(10), xend = factor(">10x Overestimated",levels=levels(FitData$TriageCat)), yend = log10(500)), size=3,colour = "grey") +
# geom_hline(yintercept=0)+
# geom_hline(yintercept=log10(1/10),linetype="dashed")+
# geom_hline(yintercept=log10(1/3.2),linetype="dashed")+
# geom_hline(yintercept=log10(3.2),linetype="dashed")+
# geom_hline(yintercept=log10(10),linetype="dashed")+
# geom_text(size=4,aes_string(y="CssResidual", x="TriageCat",label="Compound.abbrev",color="Chemical"))+
# scale_y_continuous(name=expression(paste("Actual error in ",C[ss]," prediction")),breaks=c(log10(1/10),log10(1/3.2),0,log10(3.2),1),labels=c(">10x Under",">3.2x Under","On the Order",">3.2x Over",">10x Over")) +
# xlab("Predicted Error") +
# theme_bw() +
# theme(legend.position="bottom")+
# theme(axis.text.x = element_text(angle = 45, hjust = 1))+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
# #dev.new(width=6,height=6)
# print(Fig.Triage)
#
#
#
## ----fig10, eval = execute.vignette-------------------------------------------
# PKstats <- chem.invivo.PK.summary.data
# # Add a column indicating chemical type:
# PKstats$Chemical <- "Other"
# PKstats[sapply(PKstats$CAS,is.pharma),"Chemical"] <- "Pharmaceutical"
#
# FigCmaxa.fit <- lm(log(Cmax)~log(Cmax.pred),data=subset(PKstats,is.finite(Cmax)))
# summary(FigCmaxa.fit)
#
# FigCmaxa <- ggplot(data=subset(PKstats,is.finite(Cmax))) +
# geom_point(size=3,aes_string(y="Cmax",
# x="Cmax.pred",
# shape="Route",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(10^-4, 10^4)) +
# scale_x_log10(label=scientific_10,limits = c(10^-4, 10^4)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated ",C[max]))) +
# xlab(expression(paste(italic("In vitro")," predicted ",C[max]))) +
# # scale_color_brewer(palette="Set2") +
# annotate("text", x = 10^-3, y = 300, label = "A",size=6) +
# annotate("text",x = 3*10^1, y = 10^-3, label = lm_R2(FigCmaxa.fit),parse=TRUE,size=6) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
#
#
# FigCmaxb.fit <- lm(log(Cmax)~log(Cmax.pred.Fbio),data=subset(PKstats,is.finite(Cmax)))
# summary(FigCmaxb.fit)
#
# FigCmaxb <- ggplot(data=subset(PKstats,is.finite(Cmax))) +
# geom_point(size=3,aes_string(y="Cmax",
# x="Cmax.pred.Fbio",
# shape="Route",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(10^-4, 10^4)) +
# scale_x_log10(label=scientific_10,limits = c(10^-4, 10^4)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated ",C[max]))) +
# xlab(expression(paste("Predicted ", C[max], " Using Measured ", F[bio ]))) +
# annotate("text", x = 10^-3, y = 300, label = "B",size=6) +
# annotate("text",x = 3*10^1, y = 10^-3, label = lm_R2(FigCmaxb.fit),parse=TRUE,size=6) +
# # scale_color_brewer(palette="Set2") +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
# #dev.new(width=10,height=6)
# multiplot(FigCmaxa,FigCmaxb,cols=2,widths=c(1.75,1.75))
#
## ----fig11, eval = execute.vignette-------------------------------------------
# FigAUCa.fit <- lm(log(AUC)~log(AUC.pred),data=subset(PKstats,is.finite(log(AUC))))
# FigAUCb.fit <- lm(log(AUC)~log(AUC.pred.Fbio),data=subset(PKstats,is.finite(log(AUC))))
# summary(FigAUCa.fit)
# summary(FigAUCb.fit)
#
# FigAUCa <- ggplot(data=subset(PKstats,is.finite(log(AUC)))) +
# geom_point(size=3,aes_string(y="AUC",
# x="AUC.pred",
# shape="Route",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(10^-3, 10^4)) +
# scale_x_log10(label=scientific_10,limits = c(10^-3, 10^4)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated AUC (mg*h/L)"))) +
# xlab(expression(paste(italic("In vitro")," predicted Area under the Curve (AUC, mg*h/L)"))) +
# annotate("text", x = 10^-2, y = 3000, label = "A",size=6) +
# annotate("text",x = 3*10^1, y = 10^-2, label = lm_R2(FigAUCa.fit),parse=TRUE,size=6) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
#
# FigAUCb <- ggplot(data=subset(PKstats,is.finite(log(AUC)))) +
# geom_point(size=3,aes_string(y="AUC",
# x="AUC.pred.Fbio",
# shape="Route",
# color="Chemical"))+
# scale_y_log10(label=scientific_10,limits = c(10^-3, 10^4)) +
# scale_x_log10(label=scientific_10,limits = c(10^-3, 10^4)) +
# annotation_logticks() +
# geom_abline(slope=1, intercept=0) +
# ylab(expression(paste(italic("In vivo")," estimated AUC (mg*h/L)"))) +
# xlab(expression(paste("Predicted AUC (mg*h/L) Using Measured ", F[bio]))) +
# annotate("text", x = 10^-2, y = 3000, label = "B",size=6) +
# annotate("text",x = 3*10^1, y = 10^-2, label = lm_R2(FigAUCb.fit),parse=TRUE,size=6) +
# theme_bw() +
# theme(legend.position="bottom")+
# guides(shape=guide_legend(nrow=2,byrow=TRUE),color=guide_legend(nrow=2,byrow=TRUE))
#
# #dev.new(width=10,height=6)
# multiplot(FigAUCa,FigAUCb,cols=2,widths=c(1.75,1.75))
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.