View source: R/idem_analysis.R
| imInfer | R Documentation |
Estimate treatment effect size. Estimate variation and conduct hypothesis testing by bootstrap analysis.
imInfer(
imp.rst,
n.boot = 0,
n.cores = 1,
update.progress = NULL,
effect.quantiles = c(0.25, 0.5, 0.75),
quant.ci = c(0.025, 0.975),
...,
seed = NULL
)
imp.rst |
A class |
n.boot |
Number of bootstrap samples |
n.cores |
Number of cores for parallel computation. Fixed at 1 for Windows. |
update.progress |
Parameter reserved for run |
effect.quantiles |
Composite quantiles of interest for measuring treatment effect |
quant.ci |
Quantiles for extracting bootstrap confidence intervals |
... |
Extra options for ranking subjects using the composite endpoint that include
|
seed |
Random seed |
If n.boot=0, bootstrap analysis will not be conducted. Instead, only
the treatment effect size will be estimated using the imputed data.
A class IDEMTEST list containing
List of specification parameters
Vector of sensitivity parameters
A data frame with columns
Delta0: Sensitivity parameter for control arm
Delta1: Sensitivity parameter for intervention arm
Theta: Estimated \theta
SD: Standard deviation (when n.boot >0)
PValue: p-value (when n.boot >0
A data frame with columns
Delta:Sensitivity parameter
TRT:Treatment arm
Q: Quantiles of the composite endpoint to be estimated
QuantY: Estimated quantiles if the quantiles correspond to
functional outcome (when n.boot >0)
QuantSurv: Estimated quantiles if the quantiles correspond to
survival days (when n.boot >0)
Q: Boostrap quantiles for the QuantY (when n.boot >0)
QSurv: Boostrap quantiles for the QuantSurv (when
n.boot >0)
A list with length n.boot. The ith item is the
class IDEMEST list corresponding to the ith bootstrap
sample
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.fit <- imFitModel(rst.abc);
rst.imp <- imImpAll(rst.fit, deltas=c(-0.25,0,0.25),
normal=TRUE, chains = 2, iter = 2000, warmup = 1000);
rst.est <- imInfer(rst.imp, n.boot = 0, effect.quantiles = c(0.25,0.5,0.75));
rst.test <- imInfer(rst.imp, n.boot = 100, effect.quantiles = c(0.25,0.5,0.75));
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.