View source: R/idem_analysis.R
imInfer | R Documentation |
Estimate treatment effect size. Estimate variation and conduct hypothesis testing by bootstrap analysis.
imInfer(
imp.rst,
n.boot = 0,
n.cores = 1,
update.progress = NULL,
effect.quantiles = c(0.25, 0.5, 0.75),
quant.ci = c(0.025, 0.975),
...,
seed = NULL
)
imp.rst |
A class |
n.boot |
Number of bootstrap samples |
n.cores |
Number of cores for parallel computation. Fixed at 1 for Windows. |
update.progress |
Parameter reserved for run |
effect.quantiles |
Composite quantiles of interest for measuring treatment effect |
quant.ci |
Quantiles for extracting bootstrap confidence intervals |
... |
Extra options for ranking subjects using the composite endpoint that include
|
seed |
Random seed |
If n.boot=0
, bootstrap analysis will not be conducted. Instead, only
the treatment effect size will be estimated using the imputed data.
A class IDEMTEST
list containing
List of specification parameters
Vector of sensitivity parameters
A data frame with columns
Delta0
: Sensitivity parameter for control arm
Delta1
: Sensitivity parameter for intervention arm
Theta
: Estimated \theta
SD
: Standard deviation (when n.boot >0
)
PValue
: p-value (when n.boot >0
A data frame with columns
Delta
:Sensitivity parameter
TRT
:Treatment arm
Q
: Quantiles of the composite endpoint to be estimated
QuantY
: Estimated quantiles if the quantiles correspond to
functional outcome (when n.boot >0
)
QuantSurv
: Estimated quantiles if the quantiles correspond to
survival days (when n.boot >0
)
Q
: Boostrap quantiles for the QuantY (when n.boot >0
)
QSurv
: Boostrap quantiles for the QuantSurv (when
n.boot >0
)
A list with length n.boot
. The i
th item is the
class IDEMEST
list corresponding to the i
th bootstrap
sample
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.fit <- imFitModel(rst.abc);
rst.imp <- imImpAll(rst.fit, deltas=c(-0.25,0,0.25),
normal=TRUE, chains = 2, iter = 2000, warmup = 1000);
rst.est <- imInfer(rst.imp, n.boot = 0, effect.quantiles = c(0.25,0.5,0.75));
rst.test <- imInfer(rst.imp, n.boot = 100, effect.quantiles = c(0.25,0.5,0.75));
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.