summary.IDEMINFER | R Documentation |
Summarize survivors only or Survivor Averaged Causal Effect (SACE) based on the imputation and bootstrap analysis
## S3 method for class 'IDEMINFER'
summary(object, opt = c("survivor", "SACE"), sace.deltas = NULL, ...)
object |
A class |
opt |
Types of the summary
|
sace.deltas |
Vector of sensitivity parameters for SACE estimation. If
|
... |
Optional arguments for summary |
For SACE, the default sensitivity parameters will be determined by the standard deviation of the treatment effect size on the functional outcomes.
A class summary.IDEMINFER
list containing
imputation sensitivity parameters
number of bootstrap samples in bootstrap analysis
SACE sensitivity parameters when opt = SACE
A data frame with columns
Delta0
: Imputation sensitivity parameter for control arm,
Delta1
: Imputation sensitivity parameter for intervention arm
SACE_Delta
: SACE sensitivity parameter when opt = SACE
Effect
: SACE estimate
LB
: Lower bound of the 95
UB
: Upper bound of the 95
PValue
: p-value when when n.boot > 0
in the IDEMINFER
object
Chiba Y, VanderWeele TJ (2011). A simple method for principal strata effects when the outcome has been truncated due to death. American Journal of Epidemiology 173(7):745-751.
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.fit <- imFitModel(rst.abc);
rst.imp <- imImpAll(rst.fit, deltas=c(-0.25,0,0.25),
normal=TRUE, chains = 2, iter = 2000, warmup = 1000);
rst.infer <- imInfer(rst.imp, n.boot = 100, effect.quantiles = c(0.25,0.5,0.75));
rst.sace <- summary(rst.infer, opt = "SACE")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.