tests/testthat/test-glmFamily.R

library("testthat")
library("lme4")

eps <- .Machine$double.eps
oneMeps <- 1 - eps
set.seed(1)

## sample linear predictor values for the unconstrained families
etas <- list(seq.int(-8, 8, by=1),  # equal spacing to asymptotic area
             runif(17, -8, 8),  # random sample from wide uniform dist
             rnorm(17, 0, 8),   # random sample from wide normal dist
             c(-10^30, rnorm(15, 0, 4), 10^30))

## sample linear predictor values for the families in which eta must be positive
etapos <- list(seq.int(1, 20, by=1),
               rexp(20),
               rgamma(20, 3),
               pmax(.Machine$double.eps, rnorm(20, 2, 1)))

## values of mu in the (0,1) interval
mubinom <- list(runif(100, 0, 1),
                rbeta(100, 1, 3),
                pmin(pmax(eps, rbeta(100, 0.1, 3)), oneMeps),
                pmin(pmax(eps, rbeta(100, 3, 0.1)), oneMeps))

context("glmFamily linkInv and muEta")
test_that("inverse link and muEta functions", {
    tst.lnki <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) expect_that(fam$linkinv(x), equals(ff$linkInv(x))))
    }

    tst.muEta <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) expect_that(fam$mu.eta(x), equals(ff$muEta(x))))
    }
    
    tst.lnki(binomial(),           etas) # binomial with logit link
    tst.muEta(binomial(),          etas)
    tst.lnki(binomial("probit"),   etas) # binomial with probit link
    tst.muEta(binomial("probit"),  etas)
    tst.lnki(binomial("cloglog"),  etas) # binomial with cloglog link
    tst.muEta(binomial("cloglog"), etas)
    tst.lnki(binomial("cauchit"),  etas) # binomial with cauchit link
    tst.muEta(binomial("cauchit"), etas)
    tst.lnki(poisson(),            etas) # Poisson with log link
    tst.muEta(poisson(),           etas)
    tst.lnki(gaussian(),           etas) # Gaussian with identity link
    tst.muEta(gaussian(),          etas)
    tst.lnki(Gamma(),              etapos) # gamma family
    tst.muEta(Gamma(),             etapos)
    tst.lnki(inverse.gaussian(),   etapos) # inverse Gaussian
    tst.muEta(inverse.gaussian(),  etapos)    
})

context("glmFamily linkFun and variance")
test_that("link and variance functions", {
    tst.link <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) expect_that(fam$linkfun(x), equals(ff$link(x))))
    }

    tst.variance <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) expect_that(fam$variance(x), equals(ff$variance(x))))
    }

    tst.link(    binomial(),                   mubinom)
    tst.variance(binomial(),                   mubinom)
    tst.link(    binomial("probit"),           mubinom)
    tst.link(    binomial("cauchit"),          mubinom)
    tst.link(    gaussian(),                   etas)
    tst.variance(gaussian(),                   etas)
    tst.link(    Gamma(),                      etapos)
    tst.variance(Gamma(),                      etapos)
    tst.link(    inverse.gaussian(),           etapos)
    tst.variance(inverse.gaussian(),           etapos)
    tst.variance(MASS::negative.binomial(1),   etapos)
    tst.variance(MASS::negative.binomial(0.5), etapos)    
    tst.link(    poisson(),                    etapos)
    tst.variance(poisson(),                    etapos)
})

context("glmFamily devResid and aic")
test_that("devResid and aic", {
    tst.devres <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) {
            nn <- length(x)
            wt <- rep.int(1, nn)
            n  <- wt
            y  <- switch(fam$family,
                         binomial = rbinom(nn, 1L, x),
                         gaussian =  rnorm(nn, x),
                         poisson  =  rpois(nn, x),
                         error("Unknown family"))
            dev <- ff$devResid(y, x, wt)
            expect_that(fam$dev.resids(y, x, wt), equals(dev))
            dd  <- sum(dev)
            expect_that(fam$aic(y, n, x, wt, dd), equals(ff$aic(y, n, x, wt, dd)))
        })
    }

    tst.devres(binomial(), mubinom)
    tst.devres(gaussian(), etas)
    tst.devres(poisson(),  etapos)
})

context("negative binomial")
test_that("variance", {
    tst.variance <- function(fam, frm) {
        ff <- glmFamily$new(family=fam)
        sapply(frm, function(x) expect_that(fam$variance(x), equals(ff$variance(x))))
    }
    tst.variance(MASS::negative.binomial(1.),   etapos)
    nb1       <- MASS::negative.binomial(1.)
    cppnb1    <- glmFamily$new(family=nb1)
    expect_that(cppnb1$theta(),        equals(1))
    nb2       <- MASS::negative.binomial(2.)
    cppnb1$setTheta(2)
    sapply(etapos, function(x) expect_that(cppnb1$variance(x), equals(nb2$variance(x))))
    bfam      <- glmFamily$new(family=binomial())
    if (FALSE) {
      ## segfaults on MacOS mavericks 3.1.0 ... ??
      expect_error(bfam$theta())#, "theta accessor applies only to negative binomial")
      expect_error(bfam$setTheta(2))#, "setTheta applies only to negative binomial")
    }
    })

Try the lme4 package in your browser

Any scripts or data that you put into this service are public.

lme4 documentation built on June 22, 2021, 9:07 a.m.