inst/doc/phreg_rct.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(mets)

## -----------------------------------------------------------------------------
library(mets) 
set.seed(100)

## Lu, Tsiatis simulation
data <- mets:::simLT(0.7,100)
dfactor(data) <- Z.f~Z
 
out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X)
summary(out)
###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~X)
###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X,cens.model=~+1)

## -----------------------------------------------------------------------------
###library(speff2trial) 
library(mets)
data(ACTG175)
###
data <- ACTG175[ACTG175$arms==0 | ACTG175$arms==1, ]
data <- na.omit(data[,c("days","cens","arms","strat","cd40","cd80","age")])
data$days <- data$days+runif(nrow(data))*0.01
dfactor(data) <- arms.f~arms
notrun <- 1

if (notrun==0) { 
fit1 <- speffSurv(Surv(days,cens)~cd40+cd80+age,data=data,trt.id="arms",fixed=TRUE)
summary(fit1)
}
# 
# Treatment effect
#             Log HR       SE   LowerCI   UpperCI           p
# Prop Haz  -0.70375  0.12352  -0.94584  -0.46165  1.2162e-08
# Speff     -0.72430  0.12051  -0.96050  -0.48810  1.8533e-09

out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~cd40+cd80+age,augmentC=~cd40+cd80+age)
summary(out)

## -----------------------------------------------------------------------------
dtable(data,~strat+arms)
dfactor(data) <- strat.f~strat
out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~strat.f)
summary(out)

## -----------------------------------------------------------------------------
n <- 1000
beta <- 0.15; 
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- scalecumhaz(drcumhaz,1)
base1 <- scalecumhaz(base1cumhaz,1)
base4 <- scalecumhaz(base4cumhaz,0.5)
cens <- rbind(c(0,0),c(2000,0.5),c(5110,3))
ce <- 3; betao1 <- 0

varz <- 1; dep=4; X <- z <- rgamma(n,1/varz)*varz
Z0 <- NULL
px <- 0.5
if (betao1!=0) px <- lava::expit(betao1*X)      
A0 <- rbinom(n,1,px)
r1 <- exp(A0*beta[1])
rd <- exp( A0 * 0.15)
rc <- exp( A0 * 0 )
###
rr <-    mets:::simLUCox(n,base1,death.cumhaz=dr,r1=r1,Z0=X,dependence=dep,var.z=varz,cens=ce/5000)
rr$A0 <- A0[rr$id]
rr$z1 <- attr(rr,"z")[rr$id]
rr$lz1 <- log(rr$z1)
rr$X <- rr$lz1 
rr$lX <- rr$z1
rr$statusD <- rr$status
rr <- dtransform(rr,statusD=2,death==1)
rr <- count.history(rr)
rr$Z <- rr$A0
data <- rr
data$Z.f <- as.factor(data$Z)
data$treattime <- 0
data <- dtransform(data,treattime=1,lbnr__id==1)
dlist(data,start+stop+statusD+A0+z1+treattime+Count1~id|id %in% c(4,5))

## -----------------------------------------------------------------------------
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data,
	 treat.var="treattime",typesR=c("non","R0"),typesC=c("non","C","dynC"),
	 augmentR0=~z1,augmentC=~z1+Count1)
summary(fit2)

## -----------------------------------------------------------------------------
n <- 500
beta=c(0.3,0.3);betatr=0.3;betac=0;betao=0;betao1=0;ce=3;fixed=1;sim=1;dep=4;varz=1;ztr=0; ce <- 3
## take possible frailty 
Z0 <- rgamma(n,1/varz)*varz
px0 <- 0.5; if (betao!=0) px0 <- expit(betao*Z0)
A0 <- rbinom(n,1,px0)
r1 <- exp(A0*beta[1])
#
px1 <- 0.5; if (betao1!=0) px1 <- expit(betao1*Z0)
A1 <- rbinom(n,1,px1)
r2 <- exp(A1*beta[2])
rtr <- exp(A0*betatr[1])
rr <-  mets:::simLUCox(n,base1,death.cumhaz=dr,cumhaz2=base1,rtr=rtr,betatr=0.3,A0=A0,Z0=Z0,
		r1=r1,r2=r2,dependence=dep,var.z=varz,cens=ce/5000,ztr=ztr)
rr$z1 <- attr(rr,"z")[rr$id]
rr$A1 <- A1[rr$id]
rr$A0 <- A0[rr$id]
rr$lz1 <- log(rr$z1)
rr <- count.history(rr)
rr$A1t <- 0
rr <- dtransform(rr,A1t=A1,Count2==1) 
rr$At.f <- rr$A0
rr$A0.f <- factor(rr$A0)
rr$A1.f <- factor(rr$A1)
rr <- dtransform(rr, At.f = A1, Count2 == 1)
rr$At.f <- factor(rr$At.f)
dfactor(rr)  <-  A0.f~A0
rr$treattime <- 0
rr <- dtransform(rr,treattime=1,lbnr__id==1)
rr$lagCount2 <- dlag(rr$Count2)
rr <- dtransform(rr,treattime=1,Count2==1 & (Count2!=lagCount2))
dlist(rr,start+stop+statusD+A0+A1+A1t+At.f+Count2+z1+treattime+Count1~id|id %in% c(5,10))

## -----------------------------------------------------------------------------
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr,
	 typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"),treat.var="treattime",
	 treat.model=At.f~factor(Count2),
	 augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t)
summary(sse)

## -----------------------------------------------------------------------------
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data,
	 treat.var="treattime",typesR=c("non","R0"),typesC=c("non","C","dynC"),
	 RCT=FALSE,treat.model=Z.f~z1,augmentR0=~z1,augmentC=~z1+Count1)
summary(fit2)

## -----------------------------------------------------------------------------
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr,
	 typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"),
	 treat.var="treattime",
	 RCT=FALSE, treat.model=At.f~z1*factor(Count2),
	 augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t)
summary(sse)

## -----------------------------------------------------------------------------
sessionInfo()

Try the mets package in your browser

Any scripts or data that you put into this service are public.

mets documentation built on April 4, 2025, 4:18 a.m.