R/mice_imputation_pls_estimate_pls_regression.R

Defines functions mice_imputation_pls_estimate_pls_regression

## File Name: mice_imputation_pls_estimate_pls_regression.R
## File Version: 0.336

mice_imputation_pls_estimate_pls_regression <- function( pls.facs, x, y, ry,
    use.ymat, imputationWeights, use_weights, pls.print.progress,
    pls.impMethod="pmm")
{
    # clean missing values
    x <- mice_imputation_pls_clean_missings(x=x, eps=1e-12)

    #-- process input
    x00 <- x

    x11a <- NULL
    # calculate partial least squares regression
    nfac <- min( pls.facs, ncol(x) )
    do_pls <- ( pls.facs > 0 ) & ( pls.facs < 1000)
    yobs <- y[ ry ]
    if (use.ymat){
        yobs <- y[ry,]
    }
    is_catpmm <- pls.impMethod=="catpmm"
    # center y obs
    weight.obs <- normalize_vector(x=imputationWeights[ry])
    if (! is_catpmm ){
        yobs <- yobs - stats::weighted.mean( x=yobs, w=weight.obs )
    }
    xobs <- x[ry, ]

    # include imputationWeights here and calculate weight.obs
    # in the regression model, only PLS factors of X are used
    if( use_weights & ( ! is_catpmm) ){
        weight_obs_sqrt <- sqrt(weight.obs)
        nobs <- length(weight.obs)
        cm1 <- miceadds_weighted_colMeans(x=xobs, imputationWeights=weight.obs)
        xobs <- xobs - miceadds_matrix2(cm1, nrow=nobs)
        x <- x - miceadds_matrix2(cm1, nrow=nrow(x))
        yobs <- weight_obs_sqrt * yobs
        xobs <- weight_obs_sqrt * xobs
    }

    if( pls.print.progress ){
        cat( "\n", paste( ncol(xobs), " Dimensions", sep="")  )
        cat( "\n", paste( nfac, " PLS factors are used", sep="") )
        utils::flush.console()
        if ( pls.facs==0){
            cat( "\n", "All", ncol(x),
                "predictors are used (no PLS dimension reduction)")
        }
        cat("\n\n" )
    }

    if ( do_pls ){
        VV <- ncol(xobs)
        X <- as.matrix(xobs)
        if (is_catpmm){
            dfr <- data.frame(yobs, xobs)
            res <- mice_impute_catpmm_create_dummies_y(y=yobs, dfr, ridge=1e-10)
            Y <- as.matrix(res$y1)
            requireNamespace("pls")
            pls_fun <- pls::kernelpls.fit
        } else {
            Y <- matrix(yobs,ncol=1)
            pls_fun <- kernelpls.fit2
        }

        # apply PLS dimension reduction
        pls_args <- list( X=X, Y=Y, ncomp=nfac)
        mod <- do.call( what=pls_fun, args=pls_args)

        if (is_catpmm){
            mod <- mice_impute_pls_catpmm_R2(res=mod, Y=Y, nfac=nfac)
        }


        # mod <- kernelpls.fit2( X=as.matrix(xobs), Y=matrix(yobs,ncol=1), ncomp=nfac)
        if( pls.print.progress ){
            print( round( 100*mod$R2, 2 ))
        }
        dfr2 <- x

        X <- as.matrix(x)
        if (is_catpmm){
            mod$ncomp <- ncomp <- nfac
            class(mod) <- "mvr"
            pmod1 <- predict( mod, newdata=X)
            np <- dim(pmod1)
            pmod <- matrix(0, nrow=np[1], ncol=np[2]*np[3])
            for (dd in 1:ncol(Y)){
                pmod[, (dd-1)*ncomp + 1:ncomp] <- pmod1[,dd,]
            }
            colnames(pmod) <- paste0("x",1:ncol(pmod))
        } else {
            pmod <- predict.kernelpls.fit2( mod, X=X)
        }

        x <- cbind(1, as.matrix(pmod))
        x11a <- x
        if( pls.print.progress ){
            cat( "\nPLS estimation finished ", substring(Sys.time(),1),"\n" )
            utils::flush.console()
        }

        # remove columns with small standard deviations
        sd_cols <- apply(x, 2, stats::sd)
        eps <- 1E-10
        ind <- which( sd_cols < eps*sd_cols[2] )[-1]
        if ( length(ind) > 0 ){
            x <- x[, -ind ]
        }
    }

    if ( pls.facs==0){
        x <- cbind( 1, x )
    }
    if (pls.facs > 1000){
        x <- x00
    }

    #--- output
    res <- list( x=x, x11a=x11a )
    return(res)
}

Try the miceadds package in your browser

Any scripts or data that you put into this service are public.

miceadds documentation built on May 29, 2024, 11:05 a.m.