print.methods: Print Methods for CCA, (s)PLS, PCA and Summary objects

Description Usage Arguments Details Author(s) See Also Examples

Description

Produce print methods for class "rcc", "pls", "spls", "pca", "rgcca", "sgcca" and "summary".

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## S3 method for class 'rcc'
print(x, ...)

## S3 method for class 'pls'
print(x, ...)

## S3 method for class 'spls'
print(x, ...)

## S3 method for class 'pca'
print(x, ...)

## S3 method for class 'spca'
print(x, ...)

## S3 method for class 'rgcca'
print(x, ...)

## S3 method for class 'sgcca'
print(x, ...)

## S3 method for class 'summary'
print(x, ...)

Arguments

x

object of class inheriting from "rcc", "pls", "spls", "pca", "spca", "rgcca", "sgcca"or "summary".

...

not used currently.

Details

print method for "rcc", "pls", "spls" "pca", "rgcca", "sgcca" class, returns a description of the x object including: the function used, the regularization parameters (if x of class "rcc"), the (s)PLS algorithm used (if x of class "pls" or "spls"), the samples size, the number of variables selected on each of the sPLS components (if x of class "spls") and the available components of the object.

print method for "summary" class, gives the (s)PLS algorithm used (if x of class "pls" or "spls"), the number of variates considered, the canonical correlations (if x of class "rcc"), the number of variables selected on each of the sPLS components (if x of class "spls") and the available components for Communalities Analysis, Redundancy Analysis and Variable Importance in the Projection (VIP).

Author(s)

Sébastien Déjean, Ignacio González and Kim-Anh Lê Cao.

See Also

rcc, pls, spls, vip.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
## print for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
print(nutri.res)

## print for objects of class 'summary'
more <- summary(nutri.res, cutoff = 0.65)
print(more)

## print for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
print(linn.pls)

## print for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50), 
                      keepY = c(10, 10, 10))
print(toxicity.spls)

Example output

Loading required package: MASS
Loading required package: lattice
Loading required package: ggplot2

Loaded mixOmics 6.3.2

Thank you for using mixOmics!

How to apply our methods: http://www.mixOmics.org for some examples.
Questions or comments: email us at mixomics[at]math.univ-toulouse.fr  
Any bugs? https://bitbucket.org/klecao/package-mixomics/issues
Cite us:  citation('mixOmics')
Warning messages:
1: In rgl.init(initValue, onlyNULL) : RGL: unable to open X11 display
2: 'rgl_init' failed, running with rgl.useNULL = TRUE 
3: .onUnload failed in unloadNamespace() for 'rgl', details:
  call: fun(...)
  error: object 'rgl_quit' not found 

Call:
 rcc(X = X, Y = Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008) 

 rCCA with 3 components and regularization parameters 0.064 and 0.008 for the X and Y data. 
 You entered data X of dimensions : 40 21 
 You entered data Y of dimensions : 40 120 

 Main numerical outputs: 
 -------------------- 
 canonical correlations: see object$cor 
 loading vectors: see object$loadings 
 variates: see object$variates 
 variable names: see object$names 

Call:
 pls(X = X, Y = Y) 

 PLS with a 'regression' mode with 2 PLS components. 
 You entered data X of dimensions: 20 3 
 You entered data Y of dimensions: 20 3 

 No variable selection. 

 Main numerical outputs: 
 -------------------- 
 loading vectors: see object$loadings 
 variates: see object$variates 
 variable names: see object$names 

 Functions to visualise samples: 
 -------------------- 
 plotIndiv, plotArrow 

 Functions to visualise variables: 
 -------------------- 
 plotVar, plotLoadings, network, cim 

Call:
 spls(X = X, Y = Y, ncomp = 3, keepX = c(50, 50, 50), keepY = c(10, 10, 10)) 

 sPLS with a 'regression' mode with 3 sPLS components. 
 You entered data X of dimensions: 64 3116 
 You entered data Y of dimensions: 64 10 

 Selection of [50] [50] [50] variables on each of the sPLS components on the X data set. 
 Selection of [10] [10] [10] variables on each of the sPLS components on the Y data set. 

 Main numerical outputs: 
 -------------------- 
 loading vectors: see object$loadings 
 variates: see object$variates 
 variable names: see object$names 

 Functions to visualise samples: 
 -------------------- 
 plotIndiv, plotArrow 

 Functions to visualise variables: 
 -------------------- 
 plotVar, plotLoadings, network, cim 

mixOmics documentation built on June 1, 2018, 5:06 p.m.