Description Usage Arguments Details Author(s) See Also Examples
Produce print
methods for class "rcc"
,
"pls"
, "spls"
, "pca"
, "rgcca"
, "sgcca"
and "summary"
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## S3 method for class 'rcc'
print(x, ...)
## S3 method for class 'pls'
print(x, ...)
## S3 method for class 'spls'
print(x, ...)
## S3 method for class 'pca'
print(x, ...)
## S3 method for class 'spca'
print(x, ...)
## S3 method for class 'rgcca'
print(x, ...)
## S3 method for class 'sgcca'
print(x, ...)
## S3 method for class 'summary'
print(x, ...)
|
x |
object of class inheriting from |
... |
not used currently. |
print
method for "rcc"
, "pls"
, "spls"
"pca"
, "rgcca"
, "sgcca"
class,
returns a description of the x
object including: the function used, the regularization
parameters (if x
of class "rcc"
),
the (s)PLS algorithm used (if x
of class "pls"
or "spls"
),
the samples size,
the number of variables selected on each of the sPLS components (if x
of class "spls"
)
and the available components of the object.
print
method for "summary"
class,
gives the (s)PLS algorithm used (if x
of class "pls"
or "spls"
),
the number of variates considered,
the canonical correlations (if x
of class "rcc"
),
the number of variables selected on each of the sPLS components (if x
of class "spls"
)
and the available components for Communalities Analysis,
Redundancy Analysis and Variable Importance in the Projection (VIP).
Sébastien Déjean, Ignacio González and Kim-Anh Lê Cao.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## print for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
print(nutri.res)
## print for objects of class 'summary'
more <- summary(nutri.res, cutoff = 0.65)
print(more)
## print for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
print(linn.pls)
## print for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))
print(toxicity.spls)
|
Loading required package: MASS
Loading required package: lattice
Loading required package: ggplot2
Loaded mixOmics 6.3.2
Thank you for using mixOmics!
How to apply our methods: http://www.mixOmics.org for some examples.
Questions or comments: email us at mixomics[at]math.univ-toulouse.fr
Any bugs? https://bitbucket.org/klecao/package-mixomics/issues
Cite us: citation('mixOmics')
Warning messages:
1: In rgl.init(initValue, onlyNULL) : RGL: unable to open X11 display
2: 'rgl_init' failed, running with rgl.useNULL = TRUE
3: .onUnload failed in unloadNamespace() for 'rgl', details:
call: fun(...)
error: object 'rgl_quit' not found
Call:
rcc(X = X, Y = Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
rCCA with 3 components and regularization parameters 0.064 and 0.008 for the X and Y data.
You entered data X of dimensions : 40 21
You entered data Y of dimensions : 40 120
Main numerical outputs:
--------------------
canonical correlations: see object$cor
loading vectors: see object$loadings
variates: see object$variates
variable names: see object$names
Call:
pls(X = X, Y = Y)
PLS with a 'regression' mode with 2 PLS components.
You entered data X of dimensions: 20 3
You entered data Y of dimensions: 20 3
No variable selection.
Main numerical outputs:
--------------------
loading vectors: see object$loadings
variates: see object$variates
variable names: see object$names
Functions to visualise samples:
--------------------
plotIndiv, plotArrow
Functions to visualise variables:
--------------------
plotVar, plotLoadings, network, cim
Call:
spls(X = X, Y = Y, ncomp = 3, keepX = c(50, 50, 50), keepY = c(10, 10, 10))
sPLS with a 'regression' mode with 3 sPLS components.
You entered data X of dimensions: 64 3116
You entered data Y of dimensions: 64 10
Selection of [50] [50] [50] variables on each of the sPLS components on the X data set.
Selection of [10] [10] [10] variables on each of the sPLS components on the Y data set.
Main numerical outputs:
--------------------
loading vectors: see object$loadings
variates: see object$variates
variable names: see object$names
Functions to visualise samples:
--------------------
plotIndiv, plotArrow
Functions to visualise variables:
--------------------
plotVar, plotLoadings, network, cim
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.