R/project-run.R

Defines functions mlflow_run

Documented in mlflow_run

#' Run an MLflow Project
#'
#' Wrapper for the `mlflow run` CLI command. See
#' https://www.mlflow.org/docs/latest/cli.html#mlflow-run for more info.
#'
#' @examples
#' \dontrun{
#' # This parametrized script trains a GBM model on the Iris dataset and can be run as an MLflow
#' # project. You can run this script (assuming it's saved at /some/directory/params_example.R)
#' # with custom parameters via:
#' # mlflow_run(entry_point = "params_example.R", uri = "/some/directory",
#' #   parameters = list(num_trees = 200, learning_rate = 0.1))
#' install.packages("gbm")
#' library(mlflow)
#' library(gbm)
#' # define and read input parameters
#' num_trees <- mlflow_param(name = "num_trees", default = 200, type = "integer")
#' lr <- mlflow_param(name = "learning_rate", default = 0.1, type = "numeric")
#' # use params to fit a model
#' ir.adaboost <- gbm(Species ~., data=iris, n.trees=num_trees, shrinkage=lr)
#' }
#'

#'
#' @param entry_point Entry point within project, defaults to `main` if not specified.
#' @param uri A directory containing modeling scripts, defaults to the current directory.
#' @param version Version of the project to run, as a Git commit reference for Git projects.
#' @param parameters A list of parameters.
#' @param experiment_id ID of the experiment under which to launch the run.
#' @param experiment_name Name of the experiment under which to launch the run.
#' @param backend Execution backend to use for run.
#' @param backend_config Path to JSON file which will be passed to the backend. For the Databricks backend,
#'   it should describe the cluster to use when launching a run on Databricks.
#' @param no_conda If specified, assume that MLflow is running within a Conda environment with the necessary
#'   dependencies for the current project instead of attempting to create a new Conda environment. Only
#'   valid if running locally.
#' @param storage_dir Valid only when `backend` is local. MLflow downloads artifacts from distributed URIs passed to
#'  parameters of type `path` to subdirectories of `storage_dir`.
#'
#' @return The run associated with this run.
#'
#' @export
mlflow_run <- function(uri = ".", entry_point = NULL, version = NULL, parameters = NULL,
                       experiment_id = NULL, experiment_name = NULL, backend = NULL, backend_config = NULL,
                       no_conda = FALSE, storage_dir = NULL) {
  if (!is.null(experiment_name) && !is.null(experiment_id)) {
    stop("Specify only one of `experiment_name` or `experiment_id`.")
  }
  if (is.null(experiment_name)) {
    experiment_id <- mlflow_infer_experiment_id(experiment_id)
  }
  if (file.exists(uri))
    uri <- fs::path_expand(uri)

  param_list <- if (!is.null(parameters)) parameters %>%
    purrr::imap_chr(~ paste0(.y, "=", format(.x, scientific = FALSE))) %>%
    purrr::reduce(~ mlflow_cli_param(.x, "--param-list", .y), .init = list())

  args <- list(uri) %>%
    mlflow_cli_param("--entry-point", entry_point) %>%
    mlflow_cli_param("--version", version) %>%
    mlflow_cli_param("--experiment-id", experiment_id) %>%
    mlflow_cli_param("--experiment-name", experiment_name) %>%
    mlflow_cli_param("--backend", backend) %>%
    mlflow_cli_param("--backend-config", backend_config) %>%
    mlflow_cli_param("--storage-dir", storage_dir) %>%
    c(param_list)

  args <- if (!no_conda) args else c(args, "--no-conda")
  result <- do.call(mlflow_cli, c("run", args))
  matches <- regexec(".*Run \\(ID \\'([^\\']+).*", result$stderr)
  run_id <- regmatches(result$stderr, matches)[[1]][[2]]
  invisible(run_id)
}

Try the mlflow package in your browser

Any scripts or data that you put into this service are public.

mlflow documentation built on Sept. 6, 2021, 9:06 a.m.