Nothing
#' @title EBLUPs Ratio Benchmarking based on a Univariate Fay-Herriot (Model 1)
#'
#' @description This function gives EBLUPs ratio benchmarking based on univariate Fay-Herriot (model 1)
#'
#' @param formula an object of class list of formula describe the fitted model
#' @param vardir vector containing sampling variances of direct estimators
#' @param weight vector containing proportion of units in small areas
#' @param samevar logical. If \code{TRUE}, the varians is same. Default is \code{FALSE}
#' @param MAXITER maximum number of iterations for Fisher-scoring. Default is 100
#' @param PRECISION coverage tolerance limit for the Fisher Scoring algorithm. Default value is \code{1e-4}
#' @param data dataframe containing the variables named in formula, vardir, and weight
#'
#' @return This function returns a list with following objects:
#' \item{eblup}{a list containing a value of estimators}
#' \itemize{
#' \item est.eblup : a dataframe containing EBLUP estimators
#' \item est.eblupRB : a dataframe containing ratio benchmark estimators
#' }
#'
#' \item{fit}{a list contining following objects:}
#' \itemize{
#' \item method : fitting method, named "REML"
#' \item convergence : logical value of convergence of Fisher Scoring
#' \item iterations : number of iterations of Fisher Scoring algorithm
#' \item estcoef : a data frame containing estimated model coefficients (\code{beta, std. error, t value, p-value})
#' \item refvar : estimated random effect variance
#' }
#' \item{random.effect}{a data frame containing values of random effect estimators}
#' \item{agregation}{a data frame containing agregation of direct, EBLUP, and ratio benchmark estimation}
#' @export est_saeRB
#'
#' @import abind
#' @importFrom magic adiag
#' @importFrom Matrix forceSymmetric
#' @importFrom stats model.frame na.omit model.matrix median pnorm rnorm
#' @importFrom MASS mvrnorm
#'
#' @examples
#' ## load dataset
#' data(datamsaeRB)
#'
#' # Compute EBLUP and Ratio Benchmark using auxiliary variables X1 and X2 for each dependent variable
#'
#' ## Using parameter 'data'
#' est_sae = est_saeRB(Y1 ~ X1 + X2, v1, w1, data = datamsaeRB)
#'
#' ## Without parameter 'data'
#' est_sae = est_saeRB(datamsaeRB$Y1 ~ datamsaeRB$X1 + datamsaeRB$X2, datamsaeRB$v1, datamsaeRB$w1)
#'
#' ## Return
#' est_sae$eblup$est.eblupRB # to see the Ratio Benchmark estimators
#'
est_saeRB = function (formula, vardir, weight, samevar = FALSE, MAXITER = 100, PRECISION = 1E-04, data) {
if (!is.list(formula))
formula = list(formula)
r = length(formula)
if (r > 1)
stop("You should using est_msaeRB() for multivariate")
R_function = function (vardir, n, r) {
if (r == 1) {
R = diag(vardir)
} else {
R = matrix(rep(0, times = n*r*n*r), nrow = n*r, ncol = n*r)
k = 1
for (i in 1:r) {
for (j in 1:r) {
if (i <= j) {
mat0 = matrix(rep(0, times = r*r), nrow = r, ncol = r)
mat0[i, j] = 1
matVr = diag(vardir[, k], length(vardir[, k]))
R_hasil = kronecker(mat0, matVr)
R = R + R_hasil
k = k + 1
}
}
}
R = forceSymmetric(R)
}
return(as.matrix(R))
}
namevar = deparse(substitute(vardir))
nameweight = deparse(substitute(weight))
if (!missing(data)) {
formuladata = lapply(formula, function(x) model.frame(x, na.action = na.omit, data))
y = unlist(lapply(formula, function(x) model.frame(x, na.action = na.omit, data)[[1]]))
X = Reduce(adiag, lapply(formula, function(x) model.matrix(x, data)))
W = as.matrix(data[, nameweight])
n = length(y)/r
if (any(is.na(data[, namevar])))
stop("Object vardir contains NA values.")
if (any(is.na(data[, nameweight])))
stop("Object weight contains NA values.")
R = R_function(data[, namevar], n, r)
vardir = data[, namevar]
} else {
formuladata = lapply(formula, function(x) model.frame(x, na.action = na.omit))
y = unlist(lapply(formula, function(x) model.frame(x, na.action = na.omit)[[1]]))
X = Reduce(adiag, lapply(formula, function(x) model.matrix(x)))
W = as.matrix(weight)
n = length(y)/r
if (any(is.na(vardir)))
stop("Object vardir contains NA values")
if (any(is.na(weight)))
stop("Object weight contains NA values.")
R = R_function(vardir, n, r)
}
y_names = sapply(formula, "[[", 2)
Ir = diag(r)
In = diag(n)
dV = list()
dV1 = list()
for (i in 1:r){
dV[[i]] = matrix(0, nrow = r, ncol = r)
dV[[i]][i, i] = 1
dV1[[i]] = kronecker(dV[[i]], In)
}
convergence = TRUE
if (samevar) {
Vu = median(diag(R))
k = 0
diff = rep(PRECISION + 1, r)
while (any(diff > PRECISION) & (k < MAXITER)) {
k = k + 1
Vu1 = Vu
Gr = kronecker(Vu1, Ir)
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
s = (-0.5) %*% sum(diag(P)) + 0.5 %*% (t(Py) %*% Py)
iF = 0.5 %*% sum(diag(P %*% P))
Vu = Vu1 + solve(iF) %*% s
diff = abs((Vu - Vu1)/Vu1)
}
Vu = as.vector((rep(max(Vu, 0), r)))
names(Vu) = y_names
if (k >= MAXITER && diff >= PRECISION) {
convergence = FALSE
}
Gn = kronecker(diag(Vu), In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
beta = Q %*% XtVinv %*% y
res = y - X %*% beta
eblup = data.frame(matrix(X %*% beta + Gn %*% Vinv %*% res, n, r))
names(eblup) = y_names
se.b = sqrt(diag(Q))
t.value = beta/se.b
p.value = 2 * pnorm(abs(as.numeric(t.value)), lower.tail = FALSE)
coef = as.matrix(cbind(beta, se.b, t.value, p.value))
colnames(coef) = c("beta", "std. error", "t value", "p-value")
rownames(coef) = colnames(X)
coef = as.data.frame(coef)
} else {
Vu = apply(matrix(diag(R), nrow = n, ncol = r), 2, median)
k = 0
diff = rep(PRECISION + 1, r)
while (any(diff > rep(PRECISION, r)) & (k < MAXITER)) {
k = k + 1
Vu1 = Vu
if (r == 1) {
Gr = Vu1
} else {
Gr = diag(as.vector(Vu1))
}
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
s = sapply(dV1, function(x) (-0.5) * sum(diag(P %*% x)) + 0.5 * (t(Py) %*% x %*% Py))
iF = matrix(unlist(lapply(dV1, function(x) lapply(dV1, function(y) 0.5 * sum(diag(P %*% x %*% P %*% y))))), r)
Vu = Vu1 + solve(iF) %*% s
diff = abs((Vu - Vu1)/Vu1)
}
Vu = as.vector(sapply(Vu, max, 0))
if (k >= MAXITER && diff >= PRECISION){
convergence = FALSE
}
if (r == 1) {
Gr = Vu1
} else {
Gr = diag(as.vector(Vu1))
}
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
beta = Q %*% XtVinv %*% y
res = y - X %*% beta
eblup = data.frame(matrix(X %*% beta + Gn %*% Vinv %*% res, n, r))
names(eblup) = y_names
se.b = sqrt(diag(Q))
t.value = beta/se.b
p.value = 2 * pnorm(abs(as.numeric(t.value)), lower.tail = FALSE)
coef = as.matrix(cbind(beta, se.b, t.value, p.value))
colnames(coef) = c("beta", "std. error", "t value", "p-value")
rownames(coef) = colnames(X)
coef = as.data.frame(coef)
}
random.effect = data.frame(matrix(Gn %*% Vinv %*% res, n, r))
names(random.effect) = y_names
y.mat = matrix(y, nrow = n, ncol = r)
eblup.mat = as.matrix(eblup)
eblup.ratio = eblup.mat %*% (colSums(W * y.mat)/colSums(W * eblup.mat))
eblup.ratio = as.data.frame(eblup.ratio)
names(eblup.ratio) = y_names
agregation.direct = diag(t(W) %*% y.mat)
agregation.eblup = diag(t(W) %*% eblup.mat)
agregation.eblup.ratio = diag(t(W) %*% as.matrix(eblup.ratio))
agregation = as.matrix(rbind(agregation.direct, agregation.eblup, agregation.eblup.ratio))
colnames(agregation) = y_names
agregation = as.data.frame(agregation)
result = list(eblup = list(est.eblup = NA, est.eblupRB = NA), fit = list(method = NA, convergence = NA, iteration = NA, estcoef = NA, refvar = NA), random.effect = NA, agregation = NA)
result$eblup$est.eblup = eblup
result$eblup$est.eblupRB = eblup.ratio
result$fit$method = "REML"
result$fit$convergence = convergence
result$fit$iteration = k
result$fit$estcoef = coef
result$fit$refvar = t(Vu)
result$random.effect = random.effect
result$agregation = agregation
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.