Nothing
#' Control for bobyqa estimation method in nlmixr2
#'
#' @inheritParams foceiControl
#' @inheritParams saemControl
#'
#' @param returnBobyqa return the bobyqa output instead of the nlmixr2
#' fit
#'
#' @param npt The number of points used to approximate the objective
#' function via a quadratic approximation. The value of npt must be
#' in the interval [n+2,(n+1)(n+2)/2] where n is the number of
#' parameters in `par`. Choices that exceed 2*n+1 are not
#' recommended. If not defined, it will be set to min(n * 2, n+2).
#'
#' @param rhobeg `rhobeg` and `rhoend` must be set to the initial and
#' final values of a trust region radius, so both must be positive
#' with `0 < rhoend < rhobeg`. Typically `rhobeg` should be about
#' one tenth of the greatest expected change to a variable. If the
#' user does not provide a value, this will be set to `min(0.95, 0.2
#' * max(abs(par)))`. Note also that smallest difference
#' `abs(upper-lower)` should be greater than or equal to `rhobeg*2`.
#' If this is not the case then `rhobeg` will be adjusted.
#' @param rhoend The smallest value of the trust region radius that is
#' allowed. If not defined, then 1e-6 times the value set for
#' `rhobeg` will be used.
#' @param iprint The value of `iprint` should be set to an integer
#' value in `0, 1, 2, 3, ...`, which controls the amount of
#' printing. Specifically, there is no output if `iprint=0` and
#' there is output only at the start and the return if `iprint=1`.
#' Otherwise, each new value of `rho` is printed, with the best
#' vector of variables so far and the corresponding value of the
#' objective function. Further, each new value of the objective
#' function with its variables are output if `iprint=3`. If `iprint
#' > 3`, the objective function value and corresponding variables
#' are output every `iprint` evaluations. Default value is `0`.
#' @param maxfun The maximum allowed number of function
#' evaluations. If this is exceeded, the method will terminate.
#' @return bobqya control structure
#' @export
#' @author Matthew L. Fidler
#' @examples
#'
#' \donttest{
#' # A logit regression example with emax model
#'
#' dsn <- data.frame(i=1:1000)
#' dsn$time <- exp(rnorm(1000))
#' dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))
#'
#' mod <- function() {
#' ini({
#' E0 <- 0.5
#' Em <- 0.5
#' E50 <- 2
#' g <- fix(2)
#' })
#' model({
#' v <- E0+Em*time^g/(E50^g+time^g)
#' ll(bin) ~ DV * v - log(1 + exp(v))
#' })
#' }
#'
#' fit2 <- nlmixr(mod, dsn, est="bobyqa")
#'
#' print(fit2)
#'
#' # you can also get the nlm output with
#'
#' fit2$bobyqa
#'
#' # The nlm control has been modified slightly to include
#' # extra components and name the parameters
#' }
bobyqaControl <- function(npt=NULL,
rhobeg=NULL,
rhoend=NULL,
iprint=0L,
maxfun=100000L,
returnBobyqa=FALSE,
stickyRecalcN=4,
maxOdeRecalc=5,
odeRecalcFactor=10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23) / 12), #
print = 1L, #
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"), #
scaleType = c("nlmixr2", "norm", "mult", "multAdd"), #
scaleCmax = 1e5, #
scaleCmin = 1e-5, #
scaleC=NULL,
scaleTo=1.0,
rxControl=NULL,
optExpression=TRUE, sumProd=FALSE,
literalFix=TRUE,
addProp = c("combined2", "combined1"),
calcTables=TRUE, compress=TRUE,
covMethod=c("r", ""),
adjObf=TRUE, ci=0.95, sigdig=4, sigdigTable=NULL, ...) {
checkmate::assertIntegerish(npt, null.ok=TRUE, any.missing=FALSE, lower=2, len=1)
checkmate::assertNumeric(rhobeg, null.ok=TRUE, any.missing=FALSE, lower=0, len=1)
checkmate::assertNumeric(rhoend, null.ok=TRUE, any.missing=FALSE, lower=0, len=1)
checkmate::assertIntegerish(iprint, any.missing=FALSE, lower=0, len=1)
checkmate::assertIntegerish(maxfun, any.missing=FALSE, lower=10, len=1)
checkmate::assertLogical(optExpression, len=1, any.missing=FALSE)
checkmate::assertLogical(literalFix, len=1, any.missing=FALSE)
checkmate::assertLogical(sumProd, len=1, any.missing=FALSE)
checkmate::assertLogical(returnBobyqa, len=1, any.missing=FALSE)
checkmate::assertLogical(calcTables, len=1, any.missing=FALSE)
checkmate::assertLogical(compress, len=1, any.missing=TRUE)
checkmate::assertLogical(adjObf, len=1, any.missing=TRUE)
.xtra <- list(...)
.bad <- names(.xtra)
.bad <- .bad[!(.bad %in% c("genRxControl"))]
if (length(.bad) > 0) {
stop("unused argument: ", paste
(paste0("'", .bad, "'", sep=""), collapse=", "),
call.=FALSE)
}
checkmate::assertIntegerish(stickyRecalcN, any.missing=FALSE, lower=0, len=1)
checkmate::assertIntegerish(maxOdeRecalc, any.missing=FALSE, len=1)
checkmate::assertNumeric(odeRecalcFactor, len=1, lower=1, any.missing=FALSE)
.genRxControl <- FALSE
if (!is.null(.xtra$genRxControl)) {
.genRxControl <- .xtra$genRxControl
}
if (is.null(rxControl)) {
if (!is.null(sigdig)) {
rxControl <- rxode2::rxControl(sigdig=sigdig)
} else {
rxControl <- rxode2::rxControl(atol=1e-4, rtol=1e-4)
}
.genRxControl <- TRUE
} else if (inherits(rxControl, "rxControl")) {
} else if (is.list(rxControl)) {
rxControl <- do.call(rxode2::rxControl, rxControl)
} else {
stop("solving options 'rxControl' needs to be generated from 'rxode2::rxControl'", call=FALSE)
}
if (!is.null(sigdig)) {
checkmate::assertNumeric(sigdig, lower=1, finite=TRUE, any.missing=TRUE, len=1)
if (is.null(sigdigTable)) {
sigdigTable <- round(sigdig)
}
}
if (is.null(sigdigTable)) {
sigdigTable <- 3
}
checkmate::assertIntegerish(sigdigTable, lower=1, len=1, any.missing=FALSE)
checkmate::assertLogical(useColor, any.missing=FALSE, len=1)
checkmate::assertIntegerish(print, len=1, lower=0, any.missing=FALSE)
checkmate::assertIntegerish(printNcol, len=1, lower=0, any.missing=FALSE)
if (checkmate::testIntegerish(scaleType, len=1, lower=1, upper=4, any.missing=FALSE)) {
scaleType <- as.integer(scaleType)
} else {
.scaleTypeIdx <- c("norm" = 1L, "nlmixr2" = 2L, "mult" = 3L, "multAdd" = 4L)
scaleType <- setNames(.scaleTypeIdx[match.arg(scaleType)], NULL)
}
.normTypeIdx <- c("rescale2" = 1L, "rescale" = 2L, "mean" = 3L, "std" = 4L, "len" = 5L, "constant" = 6L)
if (checkmate::testIntegerish(normType, len=1, lower=1, upper=6, any.missing=FALSE)) {
normType <- as.integer(normType)
} else {
normType <- setNames(.normTypeIdx[match.arg(normType)], NULL)
}
checkmate::assertNumeric(scaleCmax, lower=0, any.missing=FALSE, len=1)
checkmate::assertNumeric(scaleCmin, lower=0, any.missing=FALSE, len=1)
if (!is.null(scaleC)) {
checkmate::assertNumeric(scaleC, lower=0, any.missing=FALSE)
}
checkmate::assertNumeric(scaleTo, len=1, lower=0, any.missing=FALSE)
.ret <- list(npt=npt,
rhobeg=rhobeg,
rhoend=rhoend,
iprint=iprint,
maxfun=maxfun,
covMethod=match.arg(covMethod),
optExpression=optExpression,
literalFix=literalFix,
sumProd=sumProd,
rxControl=rxControl,
returnBobyqa=returnBobyqa,
stickyRecalcN=as.integer(stickyRecalcN),
maxOdeRecalc=as.integer(maxOdeRecalc),
odeRecalcFactor=odeRecalcFactor,
useColor=useColor,
print=print,
printNcol=printNcol,
scaleType=scaleType,
normType=normType,
scaleCmax=scaleCmax,
scaleCmin=scaleCmin,
scaleC=scaleC,
scaleTo=scaleTo,
addProp=addProp, calcTables=calcTables,
compress=compress,
ci=ci, sigdig=sigdig, sigdigTable=sigdigTable,
genRxControl=.genRxControl)
class(.ret) <- "bobyqaControl"
.ret
}
#' @export
rxUiDeparse.bobyqaControl <- function(object, var) {
.default <- bobyqaControl()
.w <- .deparseDifferent(.default, object, "genRxControl")
.deparseFinal(.default, object, .w, var)
}
#' Get the bobyqa family control
#'
#' @param env bobyqa optimization environment
#' @param ... Other arguments
#' @return Nothing, called for side effects
#' @author Matthew L. Fidler
#' @noRd
.bobyqaFamilyControl <- function(env, ...) {
.ui <- env$ui
.control <- env$control
if (is.null(.control)) {
.control <- nlmixr2est::bobyqaControl()
}
if (!inherits(.control, "bobyqaControl")){
.control <- do.call(nlmixr2est::bobyqaControl, .control)
}
assign("control", .control, envir=.ui)
}
#' @rdname nmObjHandleControlObject
#' @export
nmObjHandleControlObject.bobyqaControl <- function(control, env) {
assign("bobyqaControl", control, envir=env)
}
#' @rdname nmObjGetControl
#' @export
nmObjGetControl.bobyqa <- function(x, ...) {
.env <- x[[1]]
if (exists("bobyqaControl", .env)) {
.control <- get("bobyqaControl", .env)
if (inherits(.control, "bobyqaControl")) return(.control)
}
if (exists("control", .env)) {
.control <- get("control", .env)
if (inherits(.control, "bobyqaControl")) return(.control)
}
stop("cannot find bobyqa related control object", call.=FALSE)
}
#' @rdname getValidNlmixrControl
#' @export
getValidNlmixrCtl.bobyqa <- function(control) {
.ctl <- control[[1]]
if (is.null(.ctl)) .ctl <- bobyqaControl()
if (is.null(attr(.ctl, "class")) && is(.ctl, "list")) .ctl <- do.call("bobyqaControl", .ctl)
if (!inherits(.ctl, "bobyqaControl")) {
.minfo("invalid control for `est=\"bobyqa\"`, using default")
.ctl <- bobyqaControl()
} else {
.ctl <- do.call(bobyqaControl, .ctl)
}
.ctl
}
.bobyqaControlToFoceiControl <- function(env, assign=TRUE) {
.bobyqaControl <- env$bobyqaControl
.ui <- env$ui
.foceiControl <- foceiControl(rxControl=env$bobyqaControl$rxControl,
maxOuterIterations=0L,
maxInnerIterations=0L,
covMethod=0L,
sumProd=.bobyqaControl$sumProd,
optExpression=.bobyqaControl$optExpression,
literalFix=.bobyqaControl$literalFix,
scaleTo=0,
calcTables=.bobyqaControl$calcTables,
addProp=.bobyqaControl$addProp,
#skipCov=.ui$foceiSkipCov,
interaction=0L,
compress=.bobyqaControl$compress,
ci=.bobyqaControl$ci,
sigdigTable=.bobyqaControl$sigdigTable)
if (assign) env$control <- .foceiControl
.foceiControl
}
.bobyqaFitModel <- function(ui, dataSav) {
# Use nlmEnv and function for DRY principle
rxode2::rxReq("minqa")
.ctl <- ui$control
.keep <- c("npt", "rhobeg", "rhoend", "iprint", "maxfun")
.keep <- .keep[vapply(.keep, function(opt) {
!is.null(.ctl[[opt]])
}, logical(1), USE.NAMES = FALSE)]
.oCtl <- setNames(lapply(.keep, function(x) {.ctl[[x]]}), .keep)
class(.ctl) <- NULL
.p <- setNames(ui$nlmParIni, ui$nlmParName)
.mi <- ui$nlmRxModel
.env <- .nlmSetupEnv(.p, ui, dataSav, .mi, .ctl,
lower=ui$optimParLower, upper=ui$optimParUpper)
on.exit({.nlmFreeEnv()})
# support gradient
.ret <- bquote(minqa::bobyqa(
par=.(.env$par.ini),
fn=.(nlmixr2est::.nlmixrOptimFunC),
lower=.(.env$lower),
upper=.(.env$upper),
control=.(.oCtl)))
.ret <- eval(.ret)
.nlmFinalizeList(.env, .ret, par="par", printLine=TRUE,
hessianCov=TRUE)
}
#' Get the full theta for nlm methods
#'
#' @param optim enhanced nlm return
#' @param ui ui object
#' @return named theta matrix
#' @author Matthew L. Fidler
#' @noRd
.bobyqaGetTheta <- function(nlm, ui) {
.iniDf <- ui$iniDf
setNames(vapply(seq_along(.iniDf$name),
function(i) {
if (.iniDf$fix[i]) {
.iniDf$est[i]
} else {
nlm$par[.iniDf$name[i]]
}
}, double(1), USE.NAMES=FALSE),
.iniDf$name)
}
.bobyqaFamilyFit <- function(env, ...) {
.ui <- env$ui
.control <- .ui$control
.data <- env$data
.ret <- new.env(parent=emptyenv())
# The environment needs:
# - table for table options
# - $origData -- Original Data
# - $dataSav -- Processed data from .foceiPreProcessData
# - $idLvl -- Level information for ID factor added
# - $covLvl -- Level information for items to convert to factor
# - $ui for ui fullTheta Full theta information
# - $etaObf data frame with ID, etas and OBJI
# - $cov For covariance
# - $covMethod for the method of calculating the covariance
# - $adjObf Should the objective function value be adjusted
# - $objective objective function value
# - $extra Extra print information
# - $method Estimation method (for printing)
# - $omega Omega matrix
# - $theta Is a theta data frame
# - $model a list of model information for table generation. Needs a `predOnly` model
# - $message Message for display
# - $est estimation method
# - $ofvType (optional) tells the type of ofv is currently being used
# When running the focei problem to create the nlmixr object, you also need a
# foceiControl object
.ret$table <- env$table
.foceiPreProcessData(.data, .ret, .ui, .control$rxControl)
.bobyqa <- .collectWarn(.bobyqaFitModel(.ui, .ret$dataSav), lst = TRUE)
.ret$bobyqa <- .bobyqa[[1]]
.ret$parHistData <- .ret$bobyqa$parHistData
.ret$bobyqa$parHistData <- NULL
.ret$message <- .ret$bobyqa$message
if (rxode2::rxGetControl(.ui, "returnBobyqa", FALSE)) {
return(.ret$bobyqa)
}
.ret$ui <- .ui
.ret$adjObf <- rxode2::rxGetControl(.ui, "adjObf", TRUE)
.ret$fullTheta <- .bobyqaGetTheta(.ret$bobyqa, .ui)
.ret$cov <- .ret$bobyqa$cov
.ret$covMethod <- .ret$bobyqa$covMethod
#.ret$etaMat <- NULL
#.ret$etaObf <- NULL
#.ret$omega <- NULL
.ret$control <- .control
.ret$extra <- ""
.nlmixr2FitUpdateParams(.ret)
nmObjHandleControlObject(.ret$control, .ret)
if (exists("control", .ui)) {
rm(list="control", envir=.ui)
}
.ret$est <- "bobyqa"
# There is no parameter history for nlme
.ret$objective <- 2 * as.numeric(.ret$bobyqa$fval)
.ret$model <- .ui$ebe
.ret$ofvType <- "bobyqa"
.bobyqaControlToFoceiControl(.ret)
.ret$theta <- .ret$ui$saemThetaDataFrame
.ret <- nlmixr2CreateOutputFromUi(.ret$ui, data=.ret$origData, control=.ret$control, table=.ret$table, env=.ret, est="bobyqa")
.env <- .ret$env
.env$method <- "bobyqa"
.ret
}
#' @rdname nlmixr2Est
#' @export
nlmixr2Est.bobyqa <- function(env, ...) {
.ui <- env$ui
rxode2::assertRxUiPopulationOnly(.ui, " for the estimation routine 'bobyqa', try 'focei'", .var.name=.ui$modelName)
rxode2::assertRxUiRandomOnIdOnly(.ui, " for the estimation routine 'bobyqa'", .var.name=.ui$modelName)
.bobyqaFamilyControl(env, ...)
on.exit({if (exists("control", envir=.ui)) rm("control", envir=.ui)}, add=TRUE)
.bobyqaFamilyFit(env, ...)
}
#minqa::bobyqa()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.