R/fmatch.R

Defines functions fmatch

##* This is the function that calls the solver
##*
##* Also handles pair matching, 1:k matching and matching
##* with between k>1 and l>k controls.  (If you want matching
##* with between k>1 and l>k members of the treatment group
##* per matched set, then you have to transpose the (virtual)
##* distance matrix before feeding the problem to this function.)
##*
##* Distances should be integer and **positive** (no 0s).  There
##* can be NAs: these will be converted to the minimum of provided
##* distances, unless all provided distances are NA, in which case
##* they'll be interpreted as 1L's.
##*
##* Units to be matched are those mentioned in the node_info argument.
##* If any of these are without eligible matches according to distance,
##* then the problem will be found infeasible.  To avoid this behavior,
##* identify and remove these units from the node_info before passing it
##* to fmatch.
##* @title Full matching via RELAX-IV min cost flow solver
##* @param distance EdgeList; see details
##* @param max.row.units numeric, upper limit on num treated units per matched set
##* @param max.col.units numeric, upper limit on num control units per matched set
##* @param min.col.units numeric, lower limit on num control units per matched set
##* @param f double, fraction of all row units to be matched
##* @param node_info NodeInfo object for this subproblem
##* @return data frame with columns `dist`, `i`, `j`, `solution`.
##*         The `dist` column holds values of the integer distance that `intSolve()` saw.
##* @author Ben Hansen, Mark Fredrickson, Adam Rauh
##* @keywords internal
fmatch <- function(distance,
                   max.row.units,
                   max.col.units,
                   min.col.units = 1,
                   f = 1,
                   node_info,
                   solver) {
  # checks solver and evaluates LEMON() if neccessary
  solver <- handleSolver(solver)

  stopifnot(is(distance, "EdgeList"), is(node_info, "NodeInfo"),
            is.numeric(f))
  if (solver == "RELAX-IV") {
    stopifnot(is.integer(node_info[['price']]))
  } else {
    # some variation of LEMON, see #229
    stopifnot(is.numeric(node_info[['price']]))
  }
  mxc <- as.integer(round(max.col.units))
  mnc <- as.integer(round(min.col.units))
  mxr <- as.integer(round(max.row.units))

  if (mnc > 1) {
    mxr <- 1L
  }

  # Check that matching problem is well-specified
  if (mxc < mnc) {
    stop("min.col.units may not exceed max.col.units")
  }

  if (any(c(mxc, mnc, mxr) < 1)) {
    stop("max and min constraints must be 1 or greater")
  }

  thenodes  <- node_info[['name']]
  row.units <- subset(thenodes, node_info[['upstream_not_down']])
  col.units <- subset(thenodes, !node_info[['upstream_not_down']])
    distance  <-
        edgelist(distance,
                 c(row.units,# NB: solver prep below assumes row.units come
                   col.units)# before col.units in levels(distance$i/j)
                 )# This also removes arcs to/from nodes not in subproblem.
  if (!is.integer(distance[['dist']])) {
      tdist  <- as.integer(distance[['dist']])
      if (!isTRUE(all.equal(distance[['dist']],tdist))) stop("distance should be integer")
      distance  <- edgelist(tibble::tibble(i=distance[['i']],
                                           j=distance[['j']],
                                           dist=tdist
                                           )
                            )
  }
  if (any(nadists  <-  is.na(distance[['dist']])))
  {
      replacement  <- if (all(nadists)) { #occurs if
                          1L              #user passed ISM
                      } else {            #produced by exactMatch()`
                          min(distance[['dist']], na.rm=TRUE)
                          }
      distance[['dist']][nadists]  <- replacement
  }

  if (mxr > 1) # i.e. many-one matches permissible
  {
      if (any(distance[['dist']] <= 0))
          stop("Nonpositive discrepancies not compatible with full matching\n (see Hansen & Klopfer, 2006 JCGS, sec.4.1).")
      } else if (any(distance[['dist']] < 0)) stop("distance should be nonnegative")

  if (!is.numeric(f) | f > 1 | f < 0) {
    stop("f must be a number in [0,1]")
  }

  ## distance is an EdgeList rep'n of a "canonical" matching, with
  ## columns, 'j', 'i' and 'dist', the first two
  ## being factors and the last being a numeric.  Typically
  ## 'j' and 'i' are interpretable as control (Z=0)
  ## and treated (Z=1) in the matching problem as it was presented
  ## to fullmatch(), pairmatch() or match_on(), but in full
  ## matching the subproblem may have been "flipped" prior
  ## to its delivery to this function.  In that case, what's
  ## "treated" here would be control in the originating problem,
  ## and vice versa.  To eliminate ambiguities in such instances,
  ## we'll prefer "i', "row.units" or "upstream" to "treated",
  ## and also "j", "col.units" or "downstream" over "control".
  nt <- length(row.units)
  nc <- length(col.units)
  n.mc  <- as.integer(round(nc * f)) # no. downstream (usu., control) units to be matched
  narcs <- nrow(distance)

  ## Ok, let's see how a big a problem we are working on
  problem.size <- narcs + nt + 2L*nc # no. arcs in MCF rep'n of problem
  if (problem.size > getMaxProblemSize()) {
      stop(paste('Maximum matching problem may have only',
                 signif(getMaxProblemSize(), 2), "- (nrows + 2*ncols) finite entries;",
                 problem.size + 1L - getMaxProblemSize(), 'too many.',
                 "Set 'options(\"optmatch_max_problem_size\" = Inf)' to disable this check."),
           call. = FALSE)
  }


  if (mnc > 1 & mxr > 1) {
    stop("since min.col.units > 1, max.row.units can be at most 1.")
  }
  #prohibit use of names reserved for the two terminal nodes
  if (any(c(row.units, col.units) == '(_Sink_)'))
    stop('Cannot choose "(_Sink_)" as unit name.')
  if (any(c(row.units, col.units) == '(_End_)'))
    stop('Cannot choose "(_End_)" as unit name')

  ## Bypass solver if problem is recognizably infeasible
  if ( (mxr >1 & nt/mxr > n.mc) | #max.row.units too low
       (mxr==1L & nt * mnc > n.mc) | #min.col.units too high
       (nt * mxc < n.mc)) { #max.col.units too low

    out <- as.data.frame(distance, row.names = NULL)
    out$solution <- rep(-1L, narcs)
    return(c(
      out,
      list(maxerr = 0),
      list(MCFSolution = NULL)
    ))
  }

  ##  Min-Cost-Flow representation of problem  ####
  ## Each node has a integer ID number, implicitly pointing
  ## to corresponding row of this data frame.
  ## nodes 1:nt are the upstream matchable units in the flow diagram
  ## nodes (nt + 1):nc are the downstream matchable units, etc.
  nodes  <- new("NodeInfo",
            data.frame(name=c(row.units, col.units,
                              "(_End_)", "(_Sink_)"),# note that `factor()` would put these at start not end of levels
                       price=0L,
                       upstream_not_down=c(rep(TRUE, nt), rep(FALSE, nc), NA, NA),
                       supply=c(rep(mxc, nt), rep(0L, nc),
                                -(mxc * nt - n.mc), -n.mc),
                       groups=factor(rep(NA_character_, nt+nc+2L)),
                       stringsAsFactors=FALSE
                       )
            )

  endID <- nt + nc + 1L
  sinkID <- endID + 1L
    node.labels(nodes)  <- nodes[['name']] # new convention per i166

    if ( !all(node_info[['price']]==0) )
    {
        nodes[,'price']  <- node_info[match(c(row.units, col.units,
                                              "(_End_)", "(_Sink_)"),
                                            node_info$name),
                                      'price']
            ## if a col unit doesn't have a match w/in node_info$name, then
            ## its nodes row now has a 0 for its price. Replace that w/ min of
            ## bookkeeping node prices may preserve CS in some cases.
            if (length(col.noprice  <- setdiff(col.units, node_info[['name']])))
                nodes[nodes[['name']] %in% col.noprice, 'price']  <-
                    min(node_info[match(c("(_End_)", "(_Sink_)"), node_info$name),
                                  'price', drop=TRUE]
                        )
            }
  # ID numbers implicitly point to corresp. row of nodes
  ####    Arcs involving End or Sink nodes   ####
  bookkeeping  <-
      data.frame(groups=factor(rep(NA_character_, nt +2L*nc)),
                 start=c(1L:(nt + nc), # ~ c(row.units, col.units)
                         nt + 1L:nc), # ~ col.units
                 end=c(rep(endID, nc + nt),
                       rep(sinkID, nc) ),
          flow=0L,
          capacity=c(rep(mxc - mnc, nt), rep(mxr - 1L, nc), rep(1L, nc))
                 )
  ## set up the problem for the Fortran algorithm ##
  ## startn indicates where each arc starts (using ID num)
  ## endn indicates where each arc ends (using ID num)
  ## "End"/"Overflow" is node nt+nc+1; "Sink" is node nt+nc+2
  #################### All arcs  ###################
  ###         Arcs rep'ing potential matches    Arcs involving End or Sink
  startn<- c(as.integer(distance[['i']]), bookkeeping$start )
  endn <-  c(as.integer(distance[['j']]), bookkeeping$end )
  ucap <-  c(rep(1L, narcs),              bookkeeping$capacity )
  redcost<-c(distance[['dist']],               rep(0L, nrow(bookkeeping)) ) +
        nodes[endn, "price"] - nodes[startn, "price"]

  ## Everything headed for the solver ought currently to be cast as integer,
  ## but passing a double by mistake will cause a difficult-to-diagnose
  ## infeasibility.  So let's just be sure:
  if (!is.integer(problem.size)) problem.size  <- as.integer(problem.size)
  if (!is.integer(startn)) startn  <- as.integer(startn)
  if (!is.integer(endn)) endn  <- as.integer(endn)
  if (!is.integer(ucap)) ucap  <- as.integer(ucap)
  if (!is.integer(nodes$supply)) nodes$supply  <- as.integer(nodes$supply)
  if (!is.integer(redcost)) redcost  <- as.integer(redcost)

  if (grepl("^LEMON", solver)) {
    algorithm <- gsub("^LEMON\\.", "", solver)

    lout <- rlemon::MinCostFlow(arcSources = startn,
                                arcTargets = endn,
                                arcCapacities = ucap,
                                arcCosts = c(distance[['dist']],
                                             rep(0L, nrow(bookkeeping))),
                                nodeSupplies = nodes$supply,
                                numNodes = nrow(nodes),
                                algorithm = algorithm)
    x <- as.numeric(lout[[1]])
    nodes[, "price"] <- lout[[2]]

    nodes[, "price"] <- (nodes[, "price"] - nodes[, "price"][endID]) * -1

    if (lout[[4]] != "OPTIMAL" || all(x == -1)) {
      x <- integer(length(x)) # fill a vector with zeros
    }
  }
  if (solver == "RELAX-IV") {
    fop <- rrelaxiv::.RELAX_IV(n1=as.integer(nc + nt + 2L),
                               na1=problem.size,
                               startn1=startn,
                               endn1=endn,
                               c1=c(distance[['dist']],
                                    rep(0L, nrow(bookkeeping))),
                               u1=ucap,
                               b1=nodes$supply,
                               rc1 = redcost,
                               crash1=as.integer(0),
                               large1=as.integer(.Machine$integer.max/4))


    ## Material used to create s3 optmatch object:
    feas <- fop$feasible1
    x <- feas * fop$x1

    #### Recover node prices, store in nodes table ##
    ## In full matching, each upstream (row) or downstream (column) node starts
    ## an arc ending at End, and these are also the only arcs ending there. End
    ## being at the bottom of the canonical diagram, call these "downarcs".
    ## Downarcs' costs are 0, so their reduced costs are simply the price of the
    ## End node minus the price of the upstream or downstream node they started
    ## from. Imposing a convention that the price of End is 0, the prices of
    ## these upstream and downstream nodes are just the opposites of the reduced
    ## costs of the arcs they begin.
    End_rownum_in_nodes_table  <- endID
    stopifnot(length(End_rownum_in_nodes_table)==1)
    is_downarc  <-  ( bookkeeping[['end']] == endID )
    downarc_redcosts  <- fop$rc1[c(rep(FALSE, narcs), is_downarc )]
    nodes[bookkeeping[['start']][ is_downarc ], "price"]  <-
      -1L * downarc_redcosts

    ## It remains to recover the price of the Sink node. There are arcs to it
    ## from every downstream (column) node, and these are the only arcs
    ## involving it. First we extract these arcs' reduced costs.
    Sink_rownum_in_nodes_table  <- which(nodes$name=="(_Sink_)")
    stopifnot(length(Sink_rownum_in_nodes_table)==1)
    is_arctosink  <-  ( bookkeeping[['end']] == Sink_rownum_in_nodes_table )
    arctosink_redcosts  <- fop$rc1[c(rep(FALSE, narcs), is_arctosink )]
    sinkprice  <- arctosink_redcosts +
      nodes[ bookkeeping[['start']][ is_arctosink ] , "price" ]
    if (!all(sinkprice==sinkprice[1])) {
      stop("Mutually inconsistent inferred sink prices.")
    }
    nodes[nodes$name=="(_Sink_)", "price"]  <- sinkprice[1]
  }

  obj <- as.data.frame(distance, row.names = NULL)
  obj$solution <-  x[seq.int(from=min(1L, narcs), to=narcs)]



  ### Recover arc flow info, store in `arcs` ###
  ## info extracted from problem solution:
  matches  <- distance[as.logical(x[1L:narcs]), c("i", "j")]
  bookkeeping[1L:(problem.size-narcs), "flow"]  <- as.integer(x)[(narcs+1L):problem.size]
  ## reshape `matches`, `bookkeeping` to match ArcInfo object spec:
  matches  <- data.frame(groups=factor(rep(NA_integer_, nrow(matches))),
                         upstream=factor(matches[['i']],
                                         levels=node.labels(nodes)
                                         ),
                         downstream=factor(matches[['j']],
                                         levels=node.labels(nodes)
                                         )
                         )
  bookkeeping[['start']]  <- factor(bookkeeping[['start']],
                                    levels=1L:(nt + nc + 2),
                                    labels=node.labels(nodes)
                                    )
  bookkeeping[['end']]  <- factor(bookkeeping[['end']],
                                  levels=1L:(nt + nc + 2),
                                  labels=node.labels(nodes)
                                  )
  arcs  <- new("ArcInfo", matches=matches, bookkeeping=bookkeeping)

  sp  <- new("SubProbInfo")
  sp[1L, "feasible"]  <- TRUE
  fmcfs  <- new("FullmatchMCFSolutions", subproblems=sp,
                nodes=nodes, arcs=arcs)
  return(c(obj,
           list(maxerr=0), # if we were called from doubleSolve(), this will be re-set there
           list(MCFSolution=fmcfs) ))

}

Try the optmatch package in your browser

Any scripts or data that you put into this service are public.

optmatch documentation built on Sept. 19, 2024, 9:06 a.m.